月
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(2011年4月) |
月 Moon | |||||||
---|---|---|---|---|---|---|---|
仮符号・別名 | 太陰 lat:Luna | ||||||
分類 | 衛星 | ||||||
発見 | |||||||
発見年 | 有史以前 | ||||||
発見方法 | 目視 | ||||||
軌道要素と性質 | |||||||
平均公転半径 | 384,400 km[1][2] | ||||||
近地点距離 (q) | 363,304km[1][3] | ||||||
遠地点距離 (Q) | 405,495km[1][3] | ||||||
離心率 (e) | 0.0548799[1] | ||||||
公転周期 (P) | 27日7時間43.193分 | ||||||
平均軌道速度 | 1.022 km/s | ||||||
軌道傾斜角 (i) | 5.1454 度 | ||||||
地球の衛星 | |||||||
物理的性質 | |||||||
長短径 | 3,475.8 km (赤道) 3,471.3 km (極) | ||||||
直径 | 3,474.3 km (平均) | ||||||
表面積 | 3,800万 km2 | ||||||
質量 | 7.347673 ×1022kg | ||||||
地球との相対質量 | 0.01230002 | ||||||
平均密度 | 3.344 g/cm3 | ||||||
表面重力 | 1.622 m/s2 (0.165 G) | ||||||
脱出速度 | 2.378 km/s | ||||||
自転周期 | 27日7時間43.193分 (恒星月、公転と同期) 29日12時間44.048分 (朔望月) | ||||||
光度 | -12.66 等(満月) | ||||||
アルベド(反射能) | 0.136 | ||||||
赤道傾斜角 | 1.5424 度 | ||||||
表面温度 |
| ||||||
年齢 | 約46億年 | ||||||
大気圧 | 10-7Pa(昼) 10-10 Pa(夜) | ||||||
■Template (■ノート ■解説) ■Project |
月(つき、独: Mond、仏: Lune、英: Moon、羅: Luna ルーナ)は、地球の唯一の衛星である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい[4]。
古くは太陽に対して太陰とも、また日輪( = 太陽)に対して月輪(がちりん)とも言った。
目次
1 概要
2 物理的特徴
2.1 月の性質
2.2 月の表面
2.3 TLP
2.4 月の影響
3 視覚的特徴
4 月の起源
4.1 古典的学説
4.2 巨大衝突説
4.3 複数衝突説
5 月齢と呼び名
5.1 月齢と人間的事象の関連の有無
6 人間と月の関係の歴史
6.1 古代ギリシア
6.2 ヨーロッパの伝統文化
6.3 西洋占星術
6.4 イスラム文化
6.5 パラオ
6.6 東洋の伝統文化
6.7 日本の伝統
6.7.1 月見
6.7.2 季語としての月
6.8 月の模様のみたての伝統
6.9 月を見ることに関する伝承
6.10 17世紀以降の月理学の発展
6.11 月旅行を描いた小説
6.12 冷戦時代の無人探査と有人探査
6.13 アポロ計画終了以後
6.14 1990年代以降の月探査機一覧
7 月面の地名
7.1 クレーター
7.2 山・山脈
7.3 海・大洋
7.4 その他
8 脚注
8.1 注釈
8.2 出典
9 参考文献
10 関連項目
11 外部リンク
概要
太陽系の中で地球に最も近い自然の天体であり、人類が到達したことのある唯一の地球外天体でもある(「アポロ計画」を参照)。
地球から見える天体の中では太陽の次に明るく、白色に光って見えるが、これは自ら発光しているのではなく、太陽光を反射したものである。
ドイツ語では Mond(モーント)、フランス語では Lune(リュヌ)、英語では Moon(ムーン)、ラテン語では Luna(ルーナ)、サンスクリット語では चंद्र(チャンドラ)、ギリシャ語ではΣελήνη(セレーネー)と呼ばれる。古くは太陽に対して太陰ともいった。漢字の「月」は三日月の形状から生まれた象形文字が変化したものである。日本語では「ツキ」というが、奈良時代以前は「ツク」という語形だったと推定されている。
また「月」は、広義には「ある惑星から見てその周りを回る衛星」を指す。例えば、「フォボスは火星の月である」などと表現する[注 1]。
月は天球上の白道と呼ばれる通り道をほぼ4週間の周期で運行する。白道は19年周期で揺らいでいるが、黄道帯とよばれる黄道周辺8度の範囲に収まる。月はほぼ2週間ごとに黄道を横切る。
恒星が月に隠される現象を掩蔽、あるいは星食という。惑星や小惑星が隠されることもある。一等星や惑星の掩蔽はめったに起こらない。天球上での月の移動速度は毎時0.5度(月の視直径)程度であるから、掩蔽の継続時間は長くても1時間程度である。
暦と月の関係は近代に至るまで密接であった。月の《満ち欠け》をもとに決めた暦は太陰暦と言い、地球から月を見ると月の明るい部分の形は毎日変化し約29.5日周期で同じ形となっており、この変化の周期をもとに暦を決めたものである。歴史的に見ればもともと太陰暦を採用していた地域のほうが多かったのであり、現代でも太陽暦と太陰暦を併用している文化圏はある。月を基準に決めた暦というのは、漁師など自然を相手に仕事をする人々にとっては日付がそのまま有用な情報をもたらしてくれるものである。日本でも、明治5年までは太陽太陰暦を主として使用していた。明治5年に公的な制度を変えた段階でこれを「旧暦」と呼ぶようになったが、その後も長らく旧暦のカレンダーは販売され、両方を併用する人々は多かった。今でも一般の太陽暦のカレンダーに旧暦を掲載したものは広く使われる。
日本語では暦を読むことを「月を読む」「ツキヨミ(ツクヨミ)」「月読」と言った。暦と言えば近代まで太陽太陰暦であったため、暦を読むとはすなわち月を読むことであった[注 2]。
物理的特徴
月の性質
月の直径 (3,474km) は、木星の衛星ガニメデ (5,262km)、土星の衛星タイタン (5,150km)、木星の衛星カリスト (4,800km)、イオ (3,630km) に次ぎ、太陽系の衛星の中で5番目に大きい[7]。また、惑星に対する衛星の直径比率で言えば、月は地球の約1/4であり、ガニメデが木星の約1/27、タイタンが土星の約1/23であるのに比べて桁違いに大きい[7]。かつては、衛星が主星の大きさの50%を超える冥王星とカロンの組に次いで2番目だったが、冥王星が準惑星に分類変更されたので、地球と月の組が1番となった。
月はその規模や構造といった物理的性質から、星そのものは地球型惑星だと考えられている[8]。ただし軌道の観点ではあくまで「衛星」の範疇であるため、太陽系の8惑星を分類する意味で「地球型惑星」と言った場合、月は含めないのが普通である。
従来、地球に対する月は、衛星としては不釣合いに大きいので、二重惑星とみなす意見もあった。月の直径は地球の4分の1強であり、質量でも81分の1に及ぶからである。月と太陽の見た目の大きさ(視直径)はほぼ等しく、約0.5度である。したがって、他の惑星の場合とは異なり、太陽が完全に月に覆い隠される皆既日食や、太陽の縁がわずかに隠されずに環状に残る金環日食が起こる。
月の形状はほぼ球形だが、厳密にはわずかにセイヨウナシ形をしている。月面の最高点は平均高度より+10.75km、最低点は-9.06kmで、共に裏側にある。質量はおよそ地球の0.0123倍 (1/81)。表面積(3793万km2)は地球の表面積の7.4%に相当し、アフリカ大陸とオーストラリア大陸を合わせた面積よりもわずかに小さい。
アメリカ合衆国のアポロ計画やソ連のルナ計画で月面に設置された反射鏡に地球からレーザー光線を照射し、光が戻ってくるのに要する時間を計れば月までの距離を正確に測定できる。この測定は月レーザー測距(LLR)と呼ばれ、1969年にアメリカのマクドナルド天文台で初めて行われた。地球中心から月の中心までの平均距離は38万4,403km(約1.3光秒)であり、地球の赤道半径の約60.27倍である。21世紀に入ってからも各国の天文台で測定が続けられており、月は平均して1年あたり3.8cmの速さで地球から遠ざかっていることが明らかになっている[9][10]。
月は、太陽系の惑星やほとんどの衛星と同じく、天の北極から見て反時計周りの方向に公転している。軌道は円に近い楕円形。自転周期は27.32日で、地球の周りを回る公転周期と完全に同期している(自転と公転の同期)。つまり地球上から月の裏側を直接観測することは永久にできない。これはそれほど珍しい現象ではなく、火星の2衛星、木星のガリレオ衛星であるイオ、エウロパ、ガニメデ、カリスト、土星の最大の衛星タイタンなどにも見られる。ただし、一致してはいても、月の自転軸が傾いていて軌道離心率が0ではないので、地球から見た月は秤動と呼ばれるゆっくりとした振動運動を行なっており、月面の59%が地上から観測可能である。逆に、月面からは地球は天空のある狭い範囲(秤動に応じて東西南北およそ±7°程度の範囲[11])に留まって見える(一点に静止して見えるわけではない)。特に、スミス海や東の海のように地球から見て月の縁に位置する地点では、秤動によって地球から見えたり隠れたりするのに応じて、逆に地球が月の地平線から昇ったり沈んだりして見える[注 3](「地球の出」の画像は月周回軌道を回る宇宙船や観測機から撮られた物である)。
2014年5月に発表された研究成果によれば、40億年前の月の自転軸は現在の自転軸と比べると数十度ずれていた事が分かったと発表された[12]。
月内部の構造はアポロ計画の際に設置された月震計で明らかになった。中心から700 - 800kmの部分は液体の性質を帯びており、液体と固体の境界付近などでマグニチュード1 - 2程度の深発月震が多発している。また、浅発月震と呼ばれる地下300km前後を震源とする地震は、マグニチュード3 - 4にもなるが、発生原因の特定はできていない。表面から60kmの部分が地球の地殻に相当し、長石の比率が高い。いわゆる地球型惑星と同様に岩石と金属からなり、深さによって成分が異なる(分化した)天体である。
月はナトリウムやカリウムなどからなる大気をもつが、地球の大気に比べると1017分の1(10京分の1)ほどの希薄さであり、表面は実質的に真空であるといえる。したがって、気象現象が発生しない。月面着陸以前の望遠鏡の観測からも月には大気がないと推定されていたが、1980年代にNASAによって実際は希薄ながらも大気が存在することが確認された。
水の存在も21世紀初頭まで確認されていなかったが、2009年11月にNASAによって南極に相当量の水が含まれることが確認された。ただし、水は極地に氷の形で存在するだけであって、熱水(鉱化溶液)による元素の集積は起きないとされていて、鉱脈は存在しないと推定されている。また現在は地質学的にも死んでいて、マントル対流も存在しないが、少なくとも25億年前までは火山活動があったことが確認されている。チタンなどの含有量は非常に多い。地球のような液体の金属核は存在しないと考えられている。
磁場は地球の約1/10,000ときわめて微弱である。月全体では磁場が存在せず、局所的に、磁場が異常に強い地域と弱い地域が混在している[13]。月はかつて全体的に磁場をもっていたが、液体の金属核の凝固に伴って、全体的な磁場もなくなり、局所的な磁場だけが残ったと考えられている。2014年5月に発表された研究成果によれば、現在の月には大規模な磁場はないが、約40億年前の月中心部では溶けた鉄が活発に運動し磁場を発生させていたことがわかった[12]。
月の表面
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2011年4月) |
月の表側(地球から観測される側)の北緯60度 - 南緯30度にわたる領域は光をあまり反射せず黒く見えることから、海と呼ばれている。海は月表面の35パーセントを占めるが、月の裏側にはほとんど存在せず、高地と呼ばれる急峻な地形からなる。月の海は、まだ内部が熱く溶け、地表の下に溶岩がある時代に隕石の衝突によって生じたクレーターの底から玄武岩質の溶岩がにじみ出てクレーターが埋められたものとされている。約20kmの厚みがある冷えて固まった黒っぽい玄武岩の層で覆われているために光をあまり反射せず、他と比べて暗く見える。表側にのみ海が存在するのは、そちら側に集中して熱を生み出す放射性物質が存在したためであるとか、また、地球からの重力の影響により、より強い重力の働く地球側でのみ溶岩が噴出したためとする説も存在するが、現在のところ定説はない。[要出典]
海以外の部分は、小石が集まった角礫岩から構成されている。これは太陽系初期から残った微惑星の衝突によって生じたものである。月には大気や水がほとんど存在しないため、地球では大気の断熱圧縮で流星となって燃え尽き、地表に到達しない微小な隕石も、月ではそのまま月面に衝突してクレーターをつくる。また水や風による浸食や地殻変動の影響を受けることもないので、数多くのクレーターがそのまま残る。
宇宙線や太陽風なども大気や磁場にさえぎられることなく月面に到達するため、月面の有人探査やあるいは将来の月面基地建設、月の植民に際しては、これらを防ぐ必要がある。大気がほとんどないため、赤道付近で昼は110℃、夜は-170℃と温度の変化が大きい[14]。なお、月の公転周期が約27.3日であるのに対して、満ち欠けが約29.5日となっているのは、月が公転する間地球も太陽の周りを公転しており、その分余計に公転しなければならないためである[15]。
月面は砂(レゴリス)によって覆われている。レゴリスは隕石などによって細かく砕かれた石が積もったものであり、月面のほぼ全体を数十cmから数十mの厚さで覆っている。より新しいクレーターなどの若い地形ほど層が浅い。その粒子は非常に細かく、宇宙服や精密機械などに入り込みやすく、問題を起こす。しかしその一方でレゴリスの約半分は酸素で構成されており、酸素の供給源や建築材料としても期待されている。また太陽風によって運ばれた水素やヘリウム3が分布密度は小さいものの吸着されており、核融合燃料になると考えられている。
両極付近のクレーター内には「永久影」と呼ばれる常に日陰となる領域があるため、氷が存在している可能性が高いと言われている。
2009年9月、無人月探査機チャンドラヤーン1号(ISRO:インド)および土星探査機カッシーニと彗星探査機ディープ・インパクト(いずれもNASA:アメリカ)の3探査機によって、月に水もしくは水の基となるヒドロキシ基が存在していることが確認されたと発表された。存在範囲は月面全体に薄く広がっている状態で、月において水もしくはヒドロキシ基を約1リットル集めるのに、月の土壌約0.76立方メートルが必要だと試算されている。確認された水もしくはヒドロキシ基は、太陽風によって運ばれた水素イオンが月面にある酸素を含んだ鉱物やガラス様物質に衝突した結果生じたものと考えられ、将来の月面探査・月面基地計画において、抽出して水素と結合すれば真水を生成可能とされている[16][17]。
同年10月9日、NASAの月探査機エルクロスが月の南極付近にあるカベウスクレーターに衝突した。衝突による閃光や噴出物を観測したところ、上層部分からは細かいチリや水蒸気が、下層部分の土砂からも水分が確認された。合計水分量は約95リットルだという。
同年10月24日、宇宙航空研究開発機構 (JAXA) は、月探査機かぐやが撮影した画像の解析で、月の表側にある平地「嵐の大洋」の中央部にあるマリウス丘に月面初となる地下溶岩トンネルに通じる縦穴を発見したと発表した。今回発見された縦穴は「嵐の大洋」において火山活動が活発だったことが分かっている地点に存在しており、直径約70m、深さ約90mの垂直な穴で、穴底部分は少なくとも横幅400m、内高20mを超えるトンネルになっているとしている。JAXAは、今回の発見は将来的な有人探査において天然の基地としての有力候補になったとしている[18]。
2010年9月7日、NASAによって、月面において初となる「天然の橋」が確認された[19]。NASAのルナー・リコネサンス・オービター (LRO) のカメラ (LROC) が撮影に成功し、その画像が公開された。画像では、橋の右側くぼみから橋下を通過した光が、左側くぼみの底に三日月形に映っている姿をとらえている。地球上においては風や水による浸食現象で形成される自然橋だが、月面で見られるこのような地形は、通常、太古の火山活動によってできた溶岩洞が崩落した結果と考えられている。ただし、今回発見されたケースでは、この天然の橋は溶岩洞の崩落によるものではなく、クレーターを形成した隕石の衝突熱で岩が融解して形成されたものと考えられている[20]。
TLP
月面に一時的な発光現象が起こることがあり、一時的月面現象 (英語: TLP, Transient Lunar phenomena) と呼ぶ。過去数百年の間に地球上からおよそ1500件の観測報告がなされているが、錯覚によるものや望遠鏡の鏡筒内異物による乱反射であったり、レンズの色収差など観測者側に何らかの原因がある場合の誤認が多いとされている[21][22]。
実際に生じている月面での発光現象の原因として明らかになっているものが幾つかある。
- 隕石の衝突[23] - 規模や持続時間の点からTLPは隕石衝突と区別される[24]。
- 月、太陽、地球の位置関係 - 月面斜面に横から太陽光線が当たると地形・高低差によりそれまでは太陽光を反射していなかった場所で反射が生じ発光しているように見える[21]。
- レゴリス - 太陽風によって帯電したレゴリスが舞い上がる[25]。
- ガス噴出 - 月の地殻に含有されているウラン(238U)が核分裂を起こし分裂生成物であるラドン(222Rn)ガス噴出に伴う発光[22](第18族元素の特徴的性質)。特にアリスタルコス・クレーター付近で顕著な現象。ガスの噴出は地表近くに溜まったガスが突発的に月面の砂を巻き上げるもので、アポロ計画で発見された月面上のガスの漏出地点と、TLPが頻発に報告される地域が一致するという研究がある[24]。
月の影響
月の重力は地球に影響を及ぼし、潮の満ち引きを起こす(潮汐作用)。なお、月よりも格段に大きい質量を持つ太陽も潮汐作用を起こし地球に潮汐力を及ぼすが、地球からの距離が月より遠距離にあるため、その影響力は月の力の半分程度である(潮汐力は距離の3乗に反比例する[26])。
月の潮汐作用により、主に海洋と海底との摩擦(海水同士、地殻同士の摩擦などもある)による熱損失から、地球の自転速度がおよそ10万年に1秒の割合で遅くなっている。また、重力による地殻の変形を介して、地球-月系の角運動量は月に移動しており、これにより、月と地球の距離は年間約3.8cmずつ離れつつある[27]。この角運動量の移動は、地球の自転周期と月の公転周期が一致するまで続くと考えられるが、そこに至るまでにはおよそ50億年を要する[27]。
逆に言えば、かつて月は現在よりも地球の近くにあり、より強力な重力・潮汐力の影響を及ぼしており、また地球(および月)はより早く回転していた。サンゴの化石の調査によれば、そこに刻まれた日輪(年輪の日版)により、4億年程前には1日は約22時間で、1年は400日程あったとされる[27]。
視覚的特徴
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2013年4月) |
月の明るさは満月で-12.7等、半月でも-10等前後に達し、夜間における最も明るい天然光源である。
地球上から月を観察すると、月の大きさが変わっているように見えることがある。空高くに位置する場合と地平線または水平線近くに位置する場合とは、明らかに大きさに変化があり、前者の場合は小さく見え、後者の場合は大きく見える。
この現象は人間の目の錯覚によるものである。カメラとは異なり、人間の目は視界に入るすべての物体を鮮明に見るべく、常に焦点位置を調節し、脳で画像を合成している。このため近場から遠方に連なる風景の先端に月が見える場合,ズームレンズを動かしながら見るように、人の認識する月が巨大化する。逆に空高くに位置する場合は、比較となる対象物が存在しないために、小さく(実質的な目視上のサイズとして)見えるのである。
実際の月の視直径は、腕を伸ばして持つ五円玉の穴の大きさとほぼ同じである。空高くに位置する時の小さな姿は、五円玉の穴にその全てが収まってしまいそうに見える。地平線近くにある大きな月の場合は、五円玉の穴に入りそうもなく思えるが、実際は小さな月と同じように五円玉の穴に全てが収まってしまう。
なお、月の公転軌道は楕円形であり近地点約36万kmに対して遠地点約40万kmであるため、見かけの大きさは月の軌道上の位置により実際に変わる。また、赤道上の地上から見ると一日のうちでも厳密には距離が変化する。月を天頂付近に見る時が一日のうちで最も月に近く、月を地平線付近に見るときは、それよりもおよそ地球の半径(約6,000km)離れるので、それだけ僅かに小さく見える。
月は一時間あたり、恒星に対して東へ0.5度強だけ動いていき、24時間では13度である。つまり、毎夜、月は前の夜より13度だけ東へ動いていく[28]。
太陽光が当たっていない、欠けた部分も肉眼でもうっすらと見えることがあるが、これは地球照(ちきゅうしょう、earthshine)と呼ばれるもので、地球で反射した太陽光が月を照らすことによって生じるものである。月は大気や雲がなく岩石のみであり、満月が明るく見えるといっても、月のアルベド(太陽光を反射する割合)は7%程である。それに対して地球(満地球)は面積で約16倍大きく、また、アルベドが20-30%(雲や氷雪が良く光を反射する)であり、地球の方がずっと強い光を放っている。肉眼での確認が容易な期間は、新月を挟む月齢27から2(三日月)前後の、月の輪郭が小さな時である。ただし新月の際には目印となるものがなく、発見が困難である。もっとも、皆既日食の際には地球照の確認が可能で、写真撮影すれば地球照で地形の見える月の周囲に太陽のコロナが写る。また、半月くらいになれば肉眼で地球照を確認することは難しいが、露出時間を長くして影の部分を写真撮影すれば地球照が写る。
月の出・月の入りの頃などに赤い月が観測されることがあるが、これは朝焼けや夕焼けと同様の原理で、月が地平近くにあることから月からの光が大気の中を長く通り、赤以外の光が散乱してしまうことによる。月食によっても発生することがある。
月の公転軌道は地球の公転軌道に対して5度ほど傾いている。この傾きが周期的に月食・日食を引き起こしている[29]。
月の起源
古典的学説
月がどの様につくられ、地球を巡る様になったかについて古くは3つの説が唱えられてきた。
- 親子説(分裂説・出産説・娘説)
- 自転による遠心力で、地球の一部が飛び出して月になったとする説。
- 兄弟説(双子集積説[30]・共成長説)
- 月と地球は同じガスの塊から、同時に作られたとする説。
- 他人説(捕獲説・配偶者説)
- 別の場所で形成された月と地球が偶然接近した際、月が地球の引力に捉えられたとする説。
だが、いずれの説も現在の月の力学的・物質的な特徴を矛盾なく説明することができなかった。まず、親子説では地球-月系の現在の全角運動量を原始の地球だけが持っていたとは考えにくかったし、他人説では広い宇宙空間を行く月が地球から丁度良い距離に接近して引力に捉えられる可能性が低かった。アポロ計画により採取された月の石の分析結果から地球のマントルと月の石の化学組成や酸素同位体比が似ている事が判明したが、兄弟説や他人説ではそうなる理由を説明できなかった。一方で、月の石の放射性炭素年代測定により、月は約45億5000万年前に誕生し、また35億年前までは小天体の衝突が多発していたことが判明した。それらを踏まえ、有力とされるようになったのが巨大衝突説である。
巨大衝突説
巨大衝突説(ジャイアント・インパクト説)は、月は地球と他の天体との衝突によって飛散した物質が地球周回軌道上で集積してできたとする説である。この説は、地球がほぼ現在の大きさになった頃、火星程の大きさの天体 (テイア) が斜めに地球へ衝突し、その衝撃で蒸発・飛散した両天体のマントル物質の一部が地球周回軌道上で集積して月が形成されたとする。
この説を用いると、以下のことが説明できる。
- 月の質量が現在程度になること。
- 地球・月系の全角運動量が現在程度でも不思議はないこと。
- 月の比重 (3.34) が地球の大陸地殻を構成する花崗岩(比重1.7 - 2.8)よりも大きく、海洋地殻を構成する玄武岩(比重2.9 - 3.2)に近いこと。
- 地球と比べて揮発性元素が欠乏していること。月形成環境が高温であったことで説明できる。
- 月のコアが小さいこと。地球やテイアのマントルを主とする軽い物質が集積したとすれば説明できる。
一方で、詳細な計算によると月岩石の同位体比は巨大衝突説で説明しづらいことが示されている。巨大衝突説の数値計算結果から、月の成分の5分の1は地球に由来し、残る5分の4は衝突天体の物質が寄与することが分かっている。しかしながら、実際には、地球と月の岩石の酸素等の同位体比はほぼ同一であることが知られていて、巨大衝突説には物質科学的な困難が存在する。このことから、次の複数衝突説が提唱されている[31]
。
複数衝突説
複数衝突説は、月は巨大衝突説が唱えるように1回の大規模衝突によって形成されたのではなく、微惑星の小さな衝突が20回程度繰り返されて月形成がなされたとする説である。このシナリオでは、衝突のたびに原始地球の周囲にデブリ円盤が形成され、円盤物質の集積で小衛星が形成される。こうした小衛星の数々は最終的に合体し、単一の月が形成される[31][32]。
複数衝突説によると、単独の衝突よりも地球から多くの物質がえぐり取るような衝突が考慮できる。これに加えて、多数の小衛星組成の平均が最終的な月組成となることから、単一衝突シナリオよりも月組成を地球に類似させやすいとされる[31][32]。また、月質量以上の周地球デブリ円盤を作る必要がないため、単一の衝突で月を作るよりも緩い条件で月形成を達成できるという利点もある[32]。
なお、巨大衝突説や複数衝突説以外の月の形成に関する新たな学説として「月は2つあった」とする学説が提示されている[33]。
月齢と呼び名
地球から見て、太陽と月が同じ方向にある瞬間を、朔(さく)又は新月という。日本や中国の旧暦で用いられた太陰暦・太陰太陽暦では、朔を含む日を月初(第1日)とする[注 4][注 5]。
朔からの経過時間を日単位で表した数値を月齢という。朔の瞬間を月齢0として、朔を含む日(朔日)を「1日」とするため、日本で用いられる旧暦の日付は、その日の午前0時の月齢に1を足したものとなる[注 6]。なお、通常、カレンダー等で示される月齢は、当日正午時点の数値である。例えば、2009年9月19日は日本標準時午前3時44分に朔となるため、この時点が月齢0となり、同日は旧暦8月1日となる。朔から24時間後の同年9月20日午前3時44分には月齢1となる。カレンダー等で示される月齢は、それぞれ正午時点での数値となるため、2009年9月19日は月齢0.3、翌20日の月齢は1.3となる。
月には、月相(月の満ち欠け)に応じて、様々な名称がある。まず、天文学的に用いられる名称としては、「朔、上弦、望、下弦」の4つがある。太陽と月の黄経差が、それぞれ0度の状態を朔、90度を上弦、180度を望、270度を下弦と呼ぶ。なお、月相は通常0度から360度までの角度で示されるが、月齢との比較を容易にするため、0度から360度までの角度を0から28までの整数の値に換算して示すことがある。この場合、朔は0、上弦は7、望は14、下弦は21となる。この月相の数値と月齢は必ずしも一致しない(詳細は月相を参照)。
このほか日本では、旧暦の日付に対応する名称(三日月、十三夜の月、十五夜の月、十六夜の月など)や月が見える時間帯に関する名称(立待月、居待月、寝待月、夕月、有明月など)、形状に対応する名称(満月、弦月、半月、弓張月など)、年中行事に関連する名称(芋名月、栗名月)など、月には多くの名称(月名、げつめい)がある。
旧暦15日の月(ほぼ満月)は日没頃に昇り、以後数日間も夜間に上るため月見に適しており、特に様々な名称が付された。日没後しばらくしてから上る旧暦16日の月は「いざよい」(ためらう、なかなか進まないの意)、以後、「立待」(立って待っていると出てくる)、「居待」(座って待っていると出てくる)、「寝待」(寝て待っていると出てくる)、「更待」(ふけまち。夜が更けてから出てくる、あるいは更に待つと出てくる)と、月の出が遅くなるごとにふさわしい名称が付けられている。なお、「夕月」は日没前後に見える月の総称であり、「有明の月」は明け方になってもまだ残っている月の総称である。
月は毎日平均約50分ずつ遅れて出るため、「月の出」がない日や1日に2回起こる日がある。そのため、月の呼び名は、旧暦の日付ではなく朔日を1とする「月の出」の回数(月の出数)によって決められる。そうしないと欠番が出たり、同じ月でも地域により呼び名が異なったりするからである。なお、月の出の時刻が0時前後になる旧暦の24日ごろ以降は、旧暦の日付と月の呼び名が1日ずれるので注意が必要である。「月の出がない日」といっても、その日に「月の出」がないだけで月が見えないわけではない。その日が始まる午前0時には既に月が出ているので、東から月が出る「月の出」がないのである。
月相 | およその月齢 | 月の出数 | 主な名称 |
---|---|---|---|
0・朔 | 0 | 1 | 新月 |
1 | 1 | 2 | 二日月、既朔(きさく) |
2 | 2 | 3 | 三日月(みかづき) |
7・上弦 | 7.5 | 7 | 半月、七日月、弓張月 |
12 | 12 | 13 | 十三日月、十三夜月 |
13 | 13 | 14 | 十四日月、小望月(こもちづき)、幾望(きぼう)、待宵の月(まつよいのつき) |
14・望 | 14 | 15 | 十五日月、十五夜、望月(もちづき)、満月[注 7] |
15 | 15 | 16 | 十六夜(いざよい)、十六日月、既望(きぼう) |
16 | 16 | 17 | 十七日月、立待月(たちまちづき) |
17 | 17 | 18 | 十八日月、居待月(いまちづき) |
18 | 18 | 19 | 十九日月、寝待月(ねまちづき)、臥待月(ふしまちづき) |
19 | 19 | 20 | 二十日月、更待月(ふけまちづき) |
21・下弦 | 22.5 | 23 | 半月、二十三日月、弓張月 |
日付 (旧暦) | 月齢[34] | 東京 | 京都 | 説明 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
月の出 | 月の入り | 月の出 | 月の出数 | 月の出 | 月の入り | 月の出 | 月の出数 | |||
9月10日 (7月22日) | 20.7 | 10:45 | 20:46 | 22 | 10:59 | 21:04 | 22 | 東京・京都とも、前日に出た月が午前10時台に没し、午後 9時頃にまた出てくる。「月の出」は 1回なので、「月の出数」は1増える。 | ||
9月11日 (7月23日) | 21.7 | 11:51 | 21:37 | 23 | 12:05 | 21:55 | 23 | 東京・京都とも、前日に出た月が正午頃に没し、午後 9時台にまた出てくる。「月の出」は 1回なので、「月の出数」は1増える。 | ||
9月12日 (7月24日) | 22.7 | 12:54 | 22:36 | 24 | 13:08 | 22:55 | 24 | 下弦。半月。 東京・京都とも、前日に出た月が午後 1時頃に没し、午後10時過ぎにまた出てくる。「月の出」は 1回なので、「月の出数」は 1増える。 | ||
9月13日 (7月25日) | 23.7 | 13:51 | 23:44 | 25 | 14:06 | - | 東京では、前日に出た月が午後 2時前に没した後、当日中に再び出てくる。そのため、「月の出数」は 1増える。これに対して京都では、前日に出た月が午後 2時過ぎに没した後、当日中には再び月が出てこない。そのため、「月の出数」は増えない。 | |||
9月14日 (7月26日) | 24.7 | 14:42 | - | 0:02 | 14:56 | 25 | 東京では、前日に出た月が午後 2時過ぎに没した後、当日中には再び月が出てこない。そのため、「月の出数」は増えない。これに対して京都では、未明に出た月が午後 3時前に没している。そのため、「月の出数」は 1増える。 | |||
9月15日 (7月27日) | 25.7 | 0:55 | 15:25 | 26 | 1:14 | 15:40 | 26 | 東京・京都とも、未明に出た月が午後 3時台に没する。「月の出」は 1回なので、「月の出数」は 1増える。 | ||
9月16日 (7月28日) | 26.7 | 2:08 | 16:02 | 27 | 2:27 | 16:18 | 27 | 東京・京都とも、未明に出た月が午後 4時台に没する。「月の出」は 1回なので、「月の出数」は 1増える。 | ||
9月17日 (7月29日) | 27.7 | 3:21 | 16:36 | 28 | 3:39 | 16:51 | 28 | 東京・京都とも、未明に出た月が午後 4時台に没する。「月の出」は 1回なので、「月の出数」は 1増える。 | ||
9月18日 (7月30日) | 28.7 | 4:32 | 17:07 | 29 | 4:49 | 17:23 | 29 | 東京・京都とも、未明に出た月が午後 5時台に没する。「月の出」は 1回なので、「月の出数」は 1増える。 | ||
9月19日 (8月1日) | 0.3 | 5:42 | 17:37 | 1 | 5:58 | 17:54 | 1 | 朔。新月。 東京・京都とも、日の出後に出た月が午後 3時台に没する。朔となったので「月の出数」は、 1に戻る。 |
和暦や中国暦の太陰太陽暦では、月の約29.5日の周期を大の月(30日間)と小の月(29日間)で調整する。このため、毎年月ごとの日数が異なり、煩雑で記憶できない。そこで、毎年、暦(大小暦)を作成して参照した。日本では、大小暦に絵を描いたものが、後に浮世絵になった。
月の初日( 1日)は「朔日(ついたち、さくじつ)」と呼び、月の最終日(29日又は30日)は「晦日(みそか、つごもり)」と呼ぶ。「ついたち」とは「月立ち(つきたち)」、「つごもり」は「月隠り(つきこもり)」が音変化した語である。また、一年の最終月の最終日(29日又は30日)は、「大晦日(おおみそか、おおつごもり)」である。
日本の童謡の「お月さん幾つ、十三ななつ」はこれだけでは意味不明であるが、沖縄民謡の童謡「月ぬ美しゃ」に由来するとの見方がある。そこでは「月ぬかいしゃ、10日3日。みやらびかいしゃ10ななつ」とあり、13日の月、つまり成熟前が美しいとの意とされ、月齢を年齢になぞらえている。
月齢と人間的事象の関連の有無
現代においても、詳細なデータなど明確な根拠を示さず、テレビ・雑誌等々で、月齢が、人間の生理的、精神的な事象(例えば出産や、自殺、殺人、交通事故の起こりやすさ等)に影響を及ぼしているのではと語られることがある。
月齢と暴力行為の因果関係については、2007年初頭にポーランドの科学者Michal Zimeckiが確認したとされるが、その一方でシドニー大学とニューサウスウェールズ州のManly病院の研究者らが、心理学専門誌Australian and New Zealand Journal of Psychiatry誌に1998年に発表した内容では「両者間に特別な関連性はみられない」とされたという。2007年6月5日、「満月の日には犯罪が増える」とイギリスの英南部サセックス州警察のある警察署が発表し、満月の日に警察官を多めに配置すべきだとの見解を表明したというが、懐疑的に見る人が多かったという[35]。
人間と月の関係の歴史
古代ギリシア
古代ギリシアの人々は、月をすでに観察していて、月食が起きるのは満月の時であること、また月食時に月の表面に丸い影が徐々に現れることを観察して、それらのことからその影というのは自分たちの住む地の影で、地は球体であると推定したといい、アリストテレースの時代(紀元前4世紀ころ)には、その知識はギリシア世界では広くゆきわたっていたという。
アリストテレースも地球の周りを月、太陽、および他の惑星が回っているという宇宙論を説いた(地球中心説)。
ギリシア神話の月の女神は元々セレーネーであるが、後にアルテミスやヘカテーと同一視され、月が満ちて欠けるように3つの顔を持つ女神とされるようになった。ローマ神話ではルーナがセレーネーと、ディアーナがアルテミスと同一視されたので、ここでも月神は2つの顔を持つとされた。これらの神々は一般にあまり区別されない。ルーナ Luna の名はロマンス語ではそのまま月を表す普通名詞となった。また、英語などではセレーネーから派生した selen-, seleno- という月を表す語根・接頭辞が存在する。元素周期表でテルル(地球)の真上に位置し、あとから発見されたセレンはこの語根から命名された。
ヨーロッパの伝統文化
古来より月は太陽と並んで神秘的な意味を付加されてきた。ヨーロッパ文化圏では太陽が金色・黄色で表現されるのに対し、月は銀色・白で表されることが多い。西洋では月が人間を狂気に引き込むと考えられ、英語で "lunatic"(ルナティック) とは気が狂っていることを表す。また満月の日に人狼は人から狼に変身し、魔女たちは黒ミサを開くと考えられていた。
西洋占星術
月は七曜・九曜の1つで、10大天体の1つである。
西洋占星術では、巨蟹宮の支配星で、吉星である。感受性を示し、母親、妻、女性に当てはまる[36]。
イスラム文化
トルコ共和国、パキスタン、モルディブ、マレーシアなどの国では国旗に新月(一般的には三日月と認識されることが多いが、地球の北半球から見る月の向きから考えると新月直前の27 - 28日月である)が描かれている。これらの国ではムスリムが国民の圧倒的多数を占める、ないしイスラム教を国教としているため、新月はイスラム教の意匠であると思われることが多いが誤解である(偶像崇拝の禁止が定められているため、月の崇拝も禁じられる)。コンスタンティノープルにおいては古くから新月がシンボルとして用いられており、オスマン帝国によってイスラム教共通の意匠として広めようと試みられた。今日、月を国旗に採用しているイスラム国家がそれほど多くはないのは、帝国の衰退とともに独立した諸国が、新月を採用しなかったためとされる。太陰暦であるイスラム暦との関連性を指摘する説もある。
また、赤十字社の十字の意匠は偶像崇拝を禁ずるイスラム教ではキリスト教信徒のイエス崇拝に繋がるという理由から長らく忌避され続けてきたため、イスラム圏では赤新月が用いられ、名称も赤新月社としている。
パラオ
パラオの国旗は、明るい青の上に黄金色の満月を描いている。シンプルなデザインではあるが、パラオの人々にとっては特別な意味を含んでいる。黄金色の月は、パラオ人の機が熟し独立国となったことを表し、また月はパラオの人々にとって収穫や、自然の循環、年中行事に重要な役割を果たしている。
東洋の伝統文化
中国の伝説では、月には桂の木が生えているとされ、呉剛という男が切ろうとしているとも言われる。また、夫の羿を裏切った嫦娥の変じた蝦蟇(ヒキガエル)が住んでいるともいわれる。そのほか、中国でも月の模様をウサギの姿とする見方がある。また、月の通り道にそって28の星座を作り、これを「二十八宿」と呼び、月は1日にこの星座を1つずつ訪ねて天空を旅していくと考えられていた。
東洋では月は陰の象徴となり、女性と連関すると考えられていた。故に月経と呼ばれた[要出典]。
日本の伝統
『古事記』では黄泉の国から戻ったイザナギが禊を行った時に右目を洗った際に生まれたツクヨミ(月読の命)が月の神格であり、夜を治めるとされている。同時に左目から生まれたのがアマテラスで、太陽の女神である。
『竹取物語』では竹から生まれた絶世の美女かぐや姫は、月の出身と明かし、月に帰っていった。他に、『今昔物語集』の天竺部に記されている「三獣、菩薩の道を修行し、兎が身を焼く語(こと)」という説話の結末で、帝釈天が火の中に飛び込んだウサギを月の中に移したとされており[37]、日本では月にはウサギが住んでいるという言い伝えがある(なおタイには、月の町と呼ばれるチャンタブリー県があり、その県章には月とウサギが描かれている)。
月見
主に秋、月を愛でる行事。代表的なものとして、中秋の名月・十五夜がある。なお中秋の名月は満月とは限らない。旧暦8月(グレゴリオ暦9月ごろ)は乾燥して月が鮮やかに見え、また月の昇る高さもほどよく、気候的にも快適なため観月に良い時節とされた。
季語としての月
俳句の世界で単に「月」と言った場合、それは秋の月。月は、春の花に対して、秋の季語である。「木の間よりもりくる月のかげ見れば心づくしの秋は来にけり」よみ人しらず(『古今和歌集』)、「月見れば千々にものこそかなしけれ我が身ひとつの秋にはあらねど」大江千里(同)など、秋の月を賞し、月に物思うこころは古くから歌に作られている。
例句
- 秋もはやはらつく雨に月の形(なり) 松尾芭蕉
- 月天心貧しき町を通りけり 与謝蕪村
傍題
- 上弦
- 下弦(かげん・げげん)
- 弓張月(片割月・弦月・半月)
- 月の舟
- 月の弓
- 上り月
- 下り月(降り月・望くだり)
- 有明(有明月)
- 朝月(朝月夜(あさづくよ))
月の模様のみたての伝統
日本では、月の海をウサギが餅つきをしている姿に見立てることがある(月の兎)。古代中国でも月の模様をウサギの姿とする見方があり、月のことを玉兎(ぎょくと)と呼ぶ。月とウサギとの由来はインド仏教説話集ジャータカからとされる。また、玉兎の他に仙女(嫦娥)や蟾蜍(ヒキガエル)だという言い伝えもある。西洋においては、月の模様をカニの姿や編み物をする老婦人とみたものがある。また、ネイティブアメリカン(インディアン)には、月の模様を女性の顔と見る慣習がある。北アメリカ、東欧では白い部分を女性の横顔に見たてている。
月を見ることに関する伝承
北欧において「妊娠した女性は月を見てはいけない」、あるいは「イヌイットの娘は月を見ると妊娠するから月を見ない」、アイスランドにおいて「子供が精神障害になるから妊婦が月に顔を向けてはいけない」など、女性が月を見ることを禁忌とした伝承はいくつかある。
17世紀以降の月理学の発展
「月の研究は望遠鏡による観察と、月面図の作成という形で始まった[要出典]。これを月理学と呼ぶ。
最初の月面図を作成したのはイギリスのウィリアム・ギルバートだと考えられている[要出典]。ウィリアム・ギルバートは1603年に亡くなっており、観察自体は1600年ごろのものだと考えられている。月面図自体が出版されたのは1651年と遅かった。ギルバートの観察は裸眼によるものであり、月理学のさきがけと言える。最初に望遠鏡で月面を観測したのは、イギリスのトーマス・ハリオットであった。ハリオットの月面図は1609年7月に作成された。ガリレオ・ガリレイによる有名なスケッチは1610年に描かれ、同年3月13日に出版された「星界の報告」で発表されている。先駆者の仕事と比較すると、特徴的な地形を精密に描いたこと、「山」の影の長さを計測し、「標高」を推定したことにおいて優れている。彼の計測により、月面の山が地球上の山よりも高いことが分かった。[要出典]
月旅行を描いた小説
ギリシャ時代に書かれたルキアノスの『イカロ・メニッパス』では、翼をつけてオリンポスの山から飛び上がることで月に行く様子が描かれている。
シラノ・ド・ベルジュラックも 1656年に『月世界旅行記』を書いている。ムルタ・マクダーモットは1728年に『A Trip to the Moon』を出版した[38]。
1865年、1870年にはフランスの作家ジュール・ヴェルヌは小説『月世界旅行』を発表した。これは、南北戦争終了後のアメリカ合衆国において、「大砲クラブ」なる火器の専門家集団が巨大な大砲を製造して、人間が入った大きな砲弾に着陸・帰還用のロケットエンジンを搭載して月に撃ち込むことで人を送り込もうとする、という物語である[注 8]。
1901年には『月世界最初の人間』がハーバート・ジョージ・ウェルズによって著された。
そのほかにも、『ジョン・W・キャンベル』の『月は地獄だ!』やロバート・A・ハインラインの『月を売った男』のように初の月面到達を描いた小説はいくつも書かれている。
日本では1882年6月に貫名駿一が『星世界旅行 千万無量』[39]、1888年に井口元一郎が『夢幻現象政海之破裂』[40]、1906年に羽化仙史が『月世界探検』[41]、1915年には石松夢人が『怪飛行艇月世界旅行』を著した[42]。
冷戦時代の無人探査と有人探査
冷戦の影響下で、有人探査にむけてアメリカ合衆国とソビエト連邦の間で熾烈な競争(宇宙開発競争、スペース・レース)が行われた。当初宇宙開発競争はソ連が先行しており、人類初の有人宇宙飛行は1961年4月12日、ソ連のボストーク1号に乗るユーリ・ガガーリンにより行われ、初めて地球周回軌道に入った。これに対抗してアメリカも宇宙開発を進めており、有人宇宙飛行計画としてマーキュリー計画が進められていた。
月に接近した最初の人工物体は、ソビエト連邦のルナ計画によって打ち上げられた無人探査機ルナ1号で、1959年1月に月近傍5,995 kmを通過した。ソビエト連邦は引き続き無人探査機ルナ2号で月面到達に成功した。ルナ2号は1959年9月13日に月面へ着陸・衝突している。月の裏側を初めて観測したのは1959年10月7日に裏側の写真を撮影したルナ3号。初めて軟着陸に成功したのはルナ9号で、1966年2月3日に着陸し月面からの写真を送信してきた。1966年3月31日に打ち上げられたルナ10号は初めて月の周回軌道に乗った。
しかし、人間を月に送ることに成功したのはアメリカである。アメリカは1959年3月3日に打ち上げられたパイオニア4号で初めて月の無人探査に成功し、1961年5月25日に行なわれた「アメリカは10年以内にアメリカ人を月に送り、無事地球に帰還させることを約束すべきだと信じます。」というケネディ大統領の声明もあって、ジェミニ計画を経てアポロ計画が行われることとなった。レインジャー計画(衝突)、サーベイヤー計画(軟着陸)、ルナ・オービター計画(周回)などにより有人機の着陸に適した場所が選ばれ、1969年7月20日、アポロ11号が静かの海に着陸しニール・アームストロング船長が人類で初めて月面に降り立った。このアポロ計画は1972年のアポロ17号まで続けられた。なお、アポロ13号は事故(液化酸素タンクの爆発)により、月面に着陸せずに、月軌道を周回して不要になったロケットパーツを月に落下させて人工地震を起こさせただけで、地球に帰還した(帰還のミッションは非常に困難なものであった)。
しかしこのような探査には高度な技術と莫大な費用が必要であり、アメリカではアポロ20号まで予定されていたが予算の削減で17号で終わった。ソ連は1970年から1974年にかけて、ルナ16号、20号、24号で月の土壌を採取し地球へ持ち帰ることに成功、ルナ17号、21号で無人月面車を送り込んだが、有人月面探査計画であるソユーズL3計画は1974年6月23日、正式に中止が決定した。
俗説として月面着陸は捏造であった、あるいは宇宙飛行士は月面で宇宙人に遭遇していたとする、アポロ計画陰謀論も存在するが、捏造の証拠とされるものはことごとく反証されており、また日本の月探査衛星が月面に残るロケット噴射跡を確認したため、少なくとも月に到着したことは事実と確認されている。
アポロ計画終了以後
アポロ計画終了以後人類は月面を歩いていないが、各国による無人探査が行われている。2004年2月、アメリカ大統領ジョージ・W・ブッシュは2020年までに再び月に人類を送り込む計画を発表し、NASAによりコンステレーション計画が発表されたが、後に予算の圧迫などを理由に中止されている。その他には、欧州宇宙機関 (ESA)、中国国家航天局 (CNSA)、日本の宇宙航空研究開発機構 (JAXA)、インド宇宙研究機関 (ISRO) でも月探査計画がある。
中国は月面探査に積極的な姿勢をとっており、特に月面でヘリウムの同位体であるヘリウム3の発掘を行い地球でエネルギー資源として用いることを狙っていると言われる。
日本ではLUNAR-AとSELENE(かぐや)の2つの計画があり、月探査計画LUNAR-Aではペネトレータと呼ばれる槍状の探査機器を月面に打ち込み、月の内部構造を探る計画だったが、2007年に計画中止が決まった。月探査周回衛星計画SELENEは月の起源と進化の解明のためのデータを取得することと、将来の月探査に向けての技術の取得を目的としている。2007年9月14日に打ち上げられ、2009年6月11日まで月を周回してデータを集めた。
なお2006年には、それまで解析されずに放置されていたアポロ観測データが発掘された[43]。この観測データの解析の結果、従来の知見を覆すような結果が得られ始めている。このアポロ観測データと日本のかぐやなど、世界の月周回探査衛星による観測データを合わせた解析によって、より月の起源について理解が深まることが期待される。
また、より長期の計画として月面基地建設の構想もある。NASAは2006年12月、上記のコンステレーション計画の一つとして2020年までに月面基地の建設を開始し、2024年頃には長期滞在を可能とする計画を発表したが、こちらも中止されている。またロシア連邦宇宙局は2007年8月、2025年までの有人月面着陸と、2028年 - 2032年の月面基地建設を柱とした長期計画を発表した。JAXAの長期計画にも有人の月面基地が含まれる。
1990年代以降の月探査機一覧
ひてん(日本、1990年 - 1993年)
クレメンタイン(米国、1994年)
ルナ・プロスペクター(米国、1998年 - 1999年)
のぞみ(日本、1998年 - 2003年)
火星へ向かうための月スイングバイの際、若干だが科学観測も行っている。
スマート1(欧州、2003年 - 2006年)
かぐや(日本、2007年 - 2009年)
嫦娥1号(中国、2007年 - 2009年)
チャンドラヤーン1号(インド、2008年 - 2009年)
ルナー・リコネサンス・オービター(米国、2009年 - )
エルクロス(米国、2009年)
嫦娥2号(中国、2010年 - )
GRAIL (アメリカ、2011年 - 2012年)
LADEE (アメリカ、2013年 - 2014年)
嫦娥3号(中国、2013年 - )
月面の地名
クレーター
- アサダ
- アッベ
- アーベル
- アベンエズラ
- アボット
- アポロ
- イネス
- エラトステネス
- グーテンベルク
クラビウス - 直径230km、地球から見える月面上のクレーターの中でも1・2を争う巨大クレーター。多角形が特徴。クリストファー・クラヴィウス(ドイツ出身の数学者・天文学者)が名の由来。- ゴクレニウス
- コペルニクス
ジョルダーノ・ブルーノ - 1178年に月面で発光現象が観測されたという記録があり、かつてはこの時にできたクレーターだと考えられていた。かぐやによる観測で実際には100万年から1000万年前に形成されたことが明らかになったが、月面にある直径10km以上のクレーターの中で最も新しいことに変わりはない[44][45]。- ティコ
- プトレマイオス
- ワン・フー
- ダーウィン
山・山脈
- ピレネー山脈
- アルプス山脈
海・大洋
嵐の大洋 - 月面最大の海
雨の海 - 2番目に大きな海- 泡の海
- 既知の海
- 危難の海
- 雲の海
- 賢者の海
- 氷の海
- 静かの海
- 島の海
- 湿りの海
- 蒸気の海
- スミス海
- 波の海
- 晴れの海
- 東の海
- 縁の海
- フンボルト海
- 蛇の海
- 南の海
- 神酒の海
- モスクワの海
- 豊かの海
その他
脚注
注釈
^ 「月」は「他の惑星の衛星」という意味がある[5]。
^ 「コヨミ」は「カヨミ(日を読むこと)」が転じた語彙という説が有力である[6]。
^ 地球から見て月が±7°程度秤動して見える以上、月から見ればその角度だけ地球の視位置が変化していることであり、「月から見て地球は天空の一点に静止して見える」というのは誤りである。特に、秤動により地球から月面の59%が観測できるということは、地球が見えたり沈んだりする月面上の場所も存在することを意味する。月周回軌道の宇宙船や観測機でなくとも、月面上で地球の出・地球の入りは観測できる。ただし、地球で見える日出・日没や月出・月没と違い、地球の出と地球の入りはほぼ同じ方位となる。
^ 太陰暦をもとにしたローマ暦では、月初を「カレンダエ (Kalendae)」、月の第13日又は第15日を「イードゥース (Īdūs)」、その9日前の第5日又は第7日を「ノーナエ (Nōnae)」と呼び、この3日を特別視した。ただし、ローマ暦における月の第1日は、必ずしも新月とは一致しない(参照:ローマ暦#ローマ暦の日付の数え方)。
^ 太陰太陽暦をもとにしたユダヤ暦では、月の第1日を「ローシュ・ホーデッシュ Rōš Hōdheš」と呼んだ。
^ ただし、朔日を除く。朔日の午前0時時点では朔を迎えていないため、いまだ月齢0となっていないからである。
^ 必ず十五夜に満月(望)になるわけではない。太陰太陽暦では、15日と16日とが半々くらいである。たまに、17日の未明が満月になることがある(例えば、2015年6月3日)。
^ 大砲を使用して宇宙へ行くという概念はヴェルヌよりも137年早くムルタ・マクダーモットが自身の著作に記していた。また、当時、既に兵器としてではあったものの、ロケットは存在しており、宇宙旅行の道具としてシラノ・ド・ベルジュラックやアシール・エアーオードの作品でも移動手段としてロケットが扱われていた。
出典
- ^ abcd丸善株式会社『理科年表 第80冊』2007年 ISBN 4621077635
^ NASA Staff (2011年5月10日). “Solar System Exploration - Earth's Moon: Facts & Figures”. NASA. 2011年11月6日閲覧。
- ^ ab離心率と軌道長半径より計算。
^ 古在由秀 「月」『世界大百科事典』 平凡社、1988年。
^ デジタル大辞泉『月』 - コトバンク
^ 『神道の本 八百万の神々がつどう秘教的祭祀の世界』 学研
- ^ ab青木、p70
^ “地球型惑星(固体) - 東京大学 地球惑星科学専攻 宇宙惑星科学講座”. 2014年7月26日時点のオリジナルよりアーカイブ。2014年7月17日閲覧。
^ Apollo Laser Ranging Experiments Yield Results From LPI Bulletin, No. 72, August, 1994
^ アポロから35年。今も続く実験。(三菱電機サイエンスサイト・2004年7月)
^ 誠文堂新光社『天文年鑑2013』pp.114-117 月の首振り運動(秤動)より、概略数値を提示。
- ^ ab“40億年前の月自転軸は数十度ずれていた (PDF)”. 九州大学 (2014年5月2日). 2016年3月4日時点のオリジナル[リンク切れ]よりアーカイブ。2014年6月28日閲覧。
^ 高橋太 (2014年). “磁場で捉えた月のダイナモと極移動の痕跡 / 宇宙科学の最前線”. JAXA. 2017年6月17日閲覧。
^ “もっと知りたい! 「月」ってナンだ!?”. JAXA. 2015年12月23日閲覧。
^ “月の満ち欠け/周期”. 国立天文台. 2015年12月23日閲覧。
^ 学術誌「Science Express」webサイト版 2009年9月24日付 掲載。
^ “月面、水が存在か 今も太陽側で生成? 3探査機観測”. 朝日新聞. (2009年9月24日). オリジナルの2010年2月13日時点によるアーカイブ。. https://web.archive.org/web/20100213030246/http://www.asahi.com/science/update/0924/TKY200909240094.html 2009年10月16日閲覧。
^ SELENE(かぐや)搭載カメラによる月面の縦穴発見 宇宙科学研究所、2009年11月5日
^ 月面に天然橋、LROが発見 ナショナルジオグラフィック
^ NASA - Lunar Reconnaissance Orbiter (LRO) (英語)
- ^ ab月のミステリー 奇妙な発光現象の正体は? NHK コズミック フロント☆NEXT
- ^ ab謎の発光現象-TLP 環境科学技術研究所
^ 月面の環境(レゴリスを中心に) (PDF) JAXA 宇宙教育センター
- ^ abRichard Lovett (2009年3月3日). “400年来の謎、月面の発光現象解明へ”. ナショナルジオグラフィック ニュース. オリジナルの2010年1月9日時点によるアーカイブ。. https://web.archive.org/web/20100109163304/http://www.nationalgeographic.co.jp/news/news_article.php?file_id=18981431&expand 2010年8月31日閲覧。
^ 小型衛星によるLTPおよび高速衝突発光現象観測の提案 ISASニュース 2005.3 No.288
^ 天文月報2004年7月号430p 国立天文台 小久保英一郎
- ^ abc青木、p140
^ 「天文学入門 星とは何か」、丸善出版、P35 ISBN 978-4-621-08116-7
^ 「天文学入門 星とは何か」、丸善出版、P44 ISBN 978-4-621-08116-7
^ “月の誕生について、巨大衝突説(ジャイアントインパクト説)は本当に正しいのでしょうか?その根拠はどのようなものなのでしょうか?”. 月探査情報ステーション. 2016年3月4日時点のオリジナル[リンク切れ]よりアーカイブ。2014年9月14日閲覧。
- ^ abc“月の起源、「巨大衝突」ではなかった? 定説覆す論文発表”. AFP通信. (2017年1月10日). http://www.afpbb.com/articles/-/3113531 2017年1月10日閲覧。
- ^ abcRaluca Rufu, Oded Aharonson & Hagai B. Perets (2017), "A multiple-impact origin for the Moon", Nature Geoscience.
^ Early Earth may have had two moons nature
^ 日本標準時正午時点の月齢。
^ “満月の日には犯罪が増える?英警察発表”. AFPBB News. (2007年6月6日). http://www.afpbb.com/article/life-culture/life/2235559/1659766 2011年4月16日閲覧。
^ 石川源晃『【実習】占星学入門』 ISBN 4-89203-153-4
^ 永積安明、池上洵一訳注『今昔物語集』平凡社、ISBN 4582803830。
^ “SPACESHIPS OF FICTION”. Science-Fantasy Review IV (18). (SPRING '50). http://efanzines.com/FR/sfr18.htm.
^ 貫名駿一 (1882年6月). 星世界旅行 千万無量. 世界蔵.
^ 井口元一郎 (1888年). 夢幻現象政海之破裂.
^ 羽化仙史 (1906年). 月世界探検. 大学館.
^ 石松夢人 (1915年). 怪飛行艇月世界旅行. 萬巻堂.
^ S Yasuyuki, T Satoshi, T Jun, H Ki-iti, H Axel (2007年). “未解析だったアポロ熱流量観測データ (PDF)”. 日本惑星科学会誌、16 (2). 2007年10月20日閲覧。
^ 「月面クレータ、ジョルダノ・ブルーノの形成年代に関する研究成果」会津大学先端情報科学研究センター
^ 『月のかぐや』JAXA宇宙航空研究開発機構・編、新潮社(2009年)22ページ
参考文献
白尾元理『月のきほん』誠文堂新光社、2006年。ISBN 4-416-20621-6。
青木満『月の科学』ベレ出版、2008年。ISBN 978-4-86064-184-9
関連項目
- 満月
- 月の光
月食・日食
- 月の裏
- 月震
- 太陰暦
衛星 - 月以外の地球の衛星
アポロ計画 - 月にある人工物の一覧
- ソ連の有人月旅行計画
- 月の植民
月部 - 漢字の部首
外部リンク
月 - Google マップ
月の地形図 (日本語) - 国立天文台
宇宙の質問箱 月編 (日本語) - 国立科学博物館
こよみの計算 (日本語)
月探査情報ステーション (日本語)
|
|