Remove all rows tha contain values below 0.10 (in all row) in R












1















This is my matrix:



x<-structure(list(Sample_250 = list(`ITUB4~time+ITSA4` = 0.0189772705000679, 
`ITSA4~time+ITUB4` = 0.0172247829378391, `KROT3~time+ESTC3` = 0.362976295896543,
`ESTC3~time+KROT3` = 0.919654541750147, `ELET6~time+ELET3` = 0.563149047013394,
`ELET3~time+ELET6` = 0.938978962441099, `VALE5~time+BRAP4` = 0.00879735041567956,
`BRAP4~time+VALE5` = 0.00327639807633581, `RSID3~time+PDGR3` = 0.537991430220927,
`PDGR3~time+RSID3` = 0.246554103682342, `PDGR3~time+BISA3` = 0.559254391144534,
`BISA3~time+PDGR3` = 0.61031816244403, `VALE5~time+VALE3` = 0.180842743583616,
`VALE3~time+VALE5` = 0.66647273985911, `BRPR3~time+BRML3` = 0.338499489464644,
`BRML3~time+BRPR3` = 0.319063657443075, `PETR4~time+PETR3` = 0.125540460125629,
`PETR3~time+PETR4` = 0.124801328997536, `DTEX3~time+CSAN3` = 0.93868928574058,
`CSAN3~time+DTEX3` = 0.237699406950144, `RSID3~time+BISA3` = 0.449718913669525,
`BISA3~time+RSID3` = 0.7561632200477, `ELPL4~time+ELET3` = 0.174294574975377,
`ELET3~time+ELPL4` = 0.300066723578605, `EVEN3~time+CSAN3` = 0.734452997271797,
`CSAN3~time+EVEN3` = 0.104402290451259, `KROT3~time+CIEL3` = 0.93683315998679,
`CIEL3~time+KROT3` = 0.936544198858508, `MRFG3~time+BISA3` = 0.588077047082012,
`BISA3~time+MRFG3` = 0.241408284405396), Sample_220 = list(
`ITUB4~time+ITSA4` = 0.0173697888550166, `ITSA4~time+ITUB4` = 0.0149942952128483,
`KROT3~time+ESTC3` = 0.482794731209648, `ESTC3~time+KROT3` = 0.890472799194387,
`ELET6~time+ELET3` = 0.289262231792853, `ELET3~time+ELET6` = 0.583772170805346,
`VALE5~time+BRAP4` = 0.0115132699560557, `BRAP4~time+VALE5` = 0.00454387128721931,
`RSID3~time+PDGR3` = 0.701361295124465, `PDGR3~time+RSID3` = 0.276392398580336,
`PDGR3~time+BISA3` = 0.459917895151059, `BISA3~time+PDGR3` = 0.932334809205404,
`VALE5~time+VALE3` = 0.228621489426817, `VALE3~time+VALE5` = 0.599616896543261,
`BRPR3~time+BRML3` = 0.423214373690621, `BRML3~time+BRPR3` = 0.43367402957197,
`PETR4~time+PETR3` = 0.0726218638061883, `PETR3~time+PETR4` = 0.0684556705423691,
`DTEX3~time+CSAN3` = 0.957213428702438, `CSAN3~time+DTEX3` = 0.643249328242026,
`RSID3~time+BISA3` = 0.140702283930701, `BISA3~time+RSID3` = 0.438759561659429,
`ELPL4~time+ELET3` = 0.108415504373493, `ELET3~time+ELPL4` = 0.259235741006097,
`EVEN3~time+CSAN3` = 0.995097190780355, `CSAN3~time+EVEN3` = 0.35833286961364,
`KROT3~time+CIEL3` = 0.883381800410008, `CIEL3~time+KROT3` = 0.58096328992918,
`MRFG3~time+BISA3` = 0.811273794794714, `BISA3~time+MRFG3` = 0.162511686203042),
Sample_200 = list(`ITUB4~time+ITSA4` = 0.0269410475431228,
`ITSA4~time+ITUB4` = 0.0268281043283851, `KROT3~time+ESTC3` = 0.648973944293657,
`ESTC3~time+KROT3` = 0.843925839073412, `ELET6~time+ELET3` = 0.85074648265282,
`ELET3~time+ELET6` = 0.926090646237098, `VALE5~time+BRAP4` = 0.0298988391464108,
`BRAP4~time+VALE5` = 0.0210534678726486, `RSID3~time+PDGR3` = 0.913261323047721,
`PDGR3~time+RSID3` = 0.460744060168818, `PDGR3~time+BISA3` = 0.681848278084124,
`BISA3~time+PDGR3` = 0.700508228924671, `VALE5~time+VALE3` = 0.404824931817606,
`VALE3~time+VALE5` = 0.858492744479535, `BRPR3~time+BRML3` = 0.282313695830455,
`BRML3~time+BRPR3` = 0.421361074266136, `PETR4~time+PETR3` = 0.0389941410401918,
`PETR3~time+PETR4` = 0.0366363568643157, `DTEX3~time+CSAN3` = 0.593381022274927,
`CSAN3~time+DTEX3` = 0.296186622367649, `RSID3~time+BISA3` = 0.136337062156413,
`BISA3~time+RSID3` = 0.253647313739565, `ELPL4~time+ELET3` = 0.0404140463603602,
`ELET3~time+ELPL4` = 0.0584026420525388, `EVEN3~time+CSAN3` = 0.992224496682121,
`CSAN3~time+EVEN3` = 0.364016491282029, `KROT3~time+CIEL3` = 0.923443434909376,
`CIEL3~time+KROT3` = 0.492267643047159, `MRFG3~time+BISA3` = 0.505439622239642,
`BISA3~time+MRFG3` = 0.433741779126583), Sample_180 = list(
`ITUB4~time+ITSA4` = 0.0709729806619366, `ITSA4~time+ITUB4` = 0.0703318148854131,
`KROT3~time+ESTC3` = 0.714222637099451, `ESTC3~time+KROT3` = 0.983192555139107,
`ELET6~time+ELET3` = 0.651446390753224, `ELET3~time+ELET6` = 0.504251519490735,
`VALE5~time+BRAP4` = 0.0655201102796135, `BRAP4~time+VALE5` = 0.064459649024225,
`RSID3~time+PDGR3` = 0.966515813873172, `PDGR3~time+RSID3` = 0.353225059948276,
`PDGR3~time+BISA3` = 0.819582167704402, `BISA3~time+PDGR3` = 0.457403474593761,
`VALE5~time+VALE3` = 0.834891076683459, `VALE3~time+VALE5` = 0.624305154223115,
`BRPR3~time+BRML3` = 0.338684631277372, `BRML3~time+BRPR3` = 0.645983354906404,
`PETR4~time+PETR3` = 0.016615774081754, `PETR3~time+PETR4` = 0.0165629129043023,
`DTEX3~time+CSAN3` = 0.642061011299162, `CSAN3~time+DTEX3` = 0.424690135396935,
`RSID3~time+BISA3` = 0.101897354576195, `BISA3~time+RSID3` = 0.204241392846169,
`ELPL4~time+ELET3` = 0.0729734425567139, `ELET3~time+ELPL4` = 0.128996393897499,
`EVEN3~time+CSAN3` = 0.899884399768484, `CSAN3~time+EVEN3` = 0.146722568327017,
`KROT3~time+CIEL3` = 0.830125914939971, `CIEL3~time+KROT3` = 0.567087012782755,
`MRFG3~time+BISA3` = 0.122725171728208, `BISA3~time+MRFG3` = 0.459448430490008)), row.names = c("ITUB4~time+ITSA4",
"ITSA4~time+ITUB4", "KROT3~time+ESTC3", "ESTC3~time+KROT3", "ELET6~time+ELET3",
"ELET3~time+ELET6", "VALE5~time+BRAP4", "BRAP4~time+VALE5", "RSID3~time+PDGR3",
"PDGR3~time+RSID3", "PDGR3~time+BISA3", "BISA3~time+PDGR3", "VALE5~time+VALE3",
"VALE3~time+VALE5", "BRPR3~time+BRML3", "BRML3~time+BRPR3", "PETR4~time+PETR3",
"PETR3~time+PETR4", "DTEX3~time+CSAN3", "CSAN3~time+DTEX3", "RSID3~time+BISA3",
"BISA3~time+RSID3", "ELPL4~time+ELET3", "ELET3~time+ELPL4", "EVEN3~time+CSAN3",
"CSAN3~time+EVEN3", "KROT3~time+CIEL3", "CIEL3~time+KROT3", "MRFG3~time+BISA3",
"BISA3~time+MRFG3"), class = "data.frame")


1º Question) I want to remove all rows that contain values bellow 0.10. It is necessary that values bellow 0.10 belongs for the 4 columns



2º Question) I want to remove all rows that contain values bellow 0.10 on the first 3 columns.



I tried this:



x[x[1:nrow(x),]<.10,]


Is it possible to do this with a basic function in R?



Any help ?



Thanks










share|improve this question


















  • 1





    You can use df[rowSums(<condition 1 (what to look for)>) <condition 2 (how many)>] as described e.g. here: How to delete rows from a dataframe that contain n*NA

    – Henrik
    Nov 13 '18 at 20:16













  • It works for you @Henrik?

    – Laura
    Nov 13 '18 at 20:28











  • I haven't tried. I was just suggesting a commonly used (and fast) method for what I thought was your question. Good luck!

    – Henrik
    Nov 13 '18 at 20:28


















1















This is my matrix:



x<-structure(list(Sample_250 = list(`ITUB4~time+ITSA4` = 0.0189772705000679, 
`ITSA4~time+ITUB4` = 0.0172247829378391, `KROT3~time+ESTC3` = 0.362976295896543,
`ESTC3~time+KROT3` = 0.919654541750147, `ELET6~time+ELET3` = 0.563149047013394,
`ELET3~time+ELET6` = 0.938978962441099, `VALE5~time+BRAP4` = 0.00879735041567956,
`BRAP4~time+VALE5` = 0.00327639807633581, `RSID3~time+PDGR3` = 0.537991430220927,
`PDGR3~time+RSID3` = 0.246554103682342, `PDGR3~time+BISA3` = 0.559254391144534,
`BISA3~time+PDGR3` = 0.61031816244403, `VALE5~time+VALE3` = 0.180842743583616,
`VALE3~time+VALE5` = 0.66647273985911, `BRPR3~time+BRML3` = 0.338499489464644,
`BRML3~time+BRPR3` = 0.319063657443075, `PETR4~time+PETR3` = 0.125540460125629,
`PETR3~time+PETR4` = 0.124801328997536, `DTEX3~time+CSAN3` = 0.93868928574058,
`CSAN3~time+DTEX3` = 0.237699406950144, `RSID3~time+BISA3` = 0.449718913669525,
`BISA3~time+RSID3` = 0.7561632200477, `ELPL4~time+ELET3` = 0.174294574975377,
`ELET3~time+ELPL4` = 0.300066723578605, `EVEN3~time+CSAN3` = 0.734452997271797,
`CSAN3~time+EVEN3` = 0.104402290451259, `KROT3~time+CIEL3` = 0.93683315998679,
`CIEL3~time+KROT3` = 0.936544198858508, `MRFG3~time+BISA3` = 0.588077047082012,
`BISA3~time+MRFG3` = 0.241408284405396), Sample_220 = list(
`ITUB4~time+ITSA4` = 0.0173697888550166, `ITSA4~time+ITUB4` = 0.0149942952128483,
`KROT3~time+ESTC3` = 0.482794731209648, `ESTC3~time+KROT3` = 0.890472799194387,
`ELET6~time+ELET3` = 0.289262231792853, `ELET3~time+ELET6` = 0.583772170805346,
`VALE5~time+BRAP4` = 0.0115132699560557, `BRAP4~time+VALE5` = 0.00454387128721931,
`RSID3~time+PDGR3` = 0.701361295124465, `PDGR3~time+RSID3` = 0.276392398580336,
`PDGR3~time+BISA3` = 0.459917895151059, `BISA3~time+PDGR3` = 0.932334809205404,
`VALE5~time+VALE3` = 0.228621489426817, `VALE3~time+VALE5` = 0.599616896543261,
`BRPR3~time+BRML3` = 0.423214373690621, `BRML3~time+BRPR3` = 0.43367402957197,
`PETR4~time+PETR3` = 0.0726218638061883, `PETR3~time+PETR4` = 0.0684556705423691,
`DTEX3~time+CSAN3` = 0.957213428702438, `CSAN3~time+DTEX3` = 0.643249328242026,
`RSID3~time+BISA3` = 0.140702283930701, `BISA3~time+RSID3` = 0.438759561659429,
`ELPL4~time+ELET3` = 0.108415504373493, `ELET3~time+ELPL4` = 0.259235741006097,
`EVEN3~time+CSAN3` = 0.995097190780355, `CSAN3~time+EVEN3` = 0.35833286961364,
`KROT3~time+CIEL3` = 0.883381800410008, `CIEL3~time+KROT3` = 0.58096328992918,
`MRFG3~time+BISA3` = 0.811273794794714, `BISA3~time+MRFG3` = 0.162511686203042),
Sample_200 = list(`ITUB4~time+ITSA4` = 0.0269410475431228,
`ITSA4~time+ITUB4` = 0.0268281043283851, `KROT3~time+ESTC3` = 0.648973944293657,
`ESTC3~time+KROT3` = 0.843925839073412, `ELET6~time+ELET3` = 0.85074648265282,
`ELET3~time+ELET6` = 0.926090646237098, `VALE5~time+BRAP4` = 0.0298988391464108,
`BRAP4~time+VALE5` = 0.0210534678726486, `RSID3~time+PDGR3` = 0.913261323047721,
`PDGR3~time+RSID3` = 0.460744060168818, `PDGR3~time+BISA3` = 0.681848278084124,
`BISA3~time+PDGR3` = 0.700508228924671, `VALE5~time+VALE3` = 0.404824931817606,
`VALE3~time+VALE5` = 0.858492744479535, `BRPR3~time+BRML3` = 0.282313695830455,
`BRML3~time+BRPR3` = 0.421361074266136, `PETR4~time+PETR3` = 0.0389941410401918,
`PETR3~time+PETR4` = 0.0366363568643157, `DTEX3~time+CSAN3` = 0.593381022274927,
`CSAN3~time+DTEX3` = 0.296186622367649, `RSID3~time+BISA3` = 0.136337062156413,
`BISA3~time+RSID3` = 0.253647313739565, `ELPL4~time+ELET3` = 0.0404140463603602,
`ELET3~time+ELPL4` = 0.0584026420525388, `EVEN3~time+CSAN3` = 0.992224496682121,
`CSAN3~time+EVEN3` = 0.364016491282029, `KROT3~time+CIEL3` = 0.923443434909376,
`CIEL3~time+KROT3` = 0.492267643047159, `MRFG3~time+BISA3` = 0.505439622239642,
`BISA3~time+MRFG3` = 0.433741779126583), Sample_180 = list(
`ITUB4~time+ITSA4` = 0.0709729806619366, `ITSA4~time+ITUB4` = 0.0703318148854131,
`KROT3~time+ESTC3` = 0.714222637099451, `ESTC3~time+KROT3` = 0.983192555139107,
`ELET6~time+ELET3` = 0.651446390753224, `ELET3~time+ELET6` = 0.504251519490735,
`VALE5~time+BRAP4` = 0.0655201102796135, `BRAP4~time+VALE5` = 0.064459649024225,
`RSID3~time+PDGR3` = 0.966515813873172, `PDGR3~time+RSID3` = 0.353225059948276,
`PDGR3~time+BISA3` = 0.819582167704402, `BISA3~time+PDGR3` = 0.457403474593761,
`VALE5~time+VALE3` = 0.834891076683459, `VALE3~time+VALE5` = 0.624305154223115,
`BRPR3~time+BRML3` = 0.338684631277372, `BRML3~time+BRPR3` = 0.645983354906404,
`PETR4~time+PETR3` = 0.016615774081754, `PETR3~time+PETR4` = 0.0165629129043023,
`DTEX3~time+CSAN3` = 0.642061011299162, `CSAN3~time+DTEX3` = 0.424690135396935,
`RSID3~time+BISA3` = 0.101897354576195, `BISA3~time+RSID3` = 0.204241392846169,
`ELPL4~time+ELET3` = 0.0729734425567139, `ELET3~time+ELPL4` = 0.128996393897499,
`EVEN3~time+CSAN3` = 0.899884399768484, `CSAN3~time+EVEN3` = 0.146722568327017,
`KROT3~time+CIEL3` = 0.830125914939971, `CIEL3~time+KROT3` = 0.567087012782755,
`MRFG3~time+BISA3` = 0.122725171728208, `BISA3~time+MRFG3` = 0.459448430490008)), row.names = c("ITUB4~time+ITSA4",
"ITSA4~time+ITUB4", "KROT3~time+ESTC3", "ESTC3~time+KROT3", "ELET6~time+ELET3",
"ELET3~time+ELET6", "VALE5~time+BRAP4", "BRAP4~time+VALE5", "RSID3~time+PDGR3",
"PDGR3~time+RSID3", "PDGR3~time+BISA3", "BISA3~time+PDGR3", "VALE5~time+VALE3",
"VALE3~time+VALE5", "BRPR3~time+BRML3", "BRML3~time+BRPR3", "PETR4~time+PETR3",
"PETR3~time+PETR4", "DTEX3~time+CSAN3", "CSAN3~time+DTEX3", "RSID3~time+BISA3",
"BISA3~time+RSID3", "ELPL4~time+ELET3", "ELET3~time+ELPL4", "EVEN3~time+CSAN3",
"CSAN3~time+EVEN3", "KROT3~time+CIEL3", "CIEL3~time+KROT3", "MRFG3~time+BISA3",
"BISA3~time+MRFG3"), class = "data.frame")


1º Question) I want to remove all rows that contain values bellow 0.10. It is necessary that values bellow 0.10 belongs for the 4 columns



2º Question) I want to remove all rows that contain values bellow 0.10 on the first 3 columns.



I tried this:



x[x[1:nrow(x),]<.10,]


Is it possible to do this with a basic function in R?



Any help ?



Thanks










share|improve this question


















  • 1





    You can use df[rowSums(<condition 1 (what to look for)>) <condition 2 (how many)>] as described e.g. here: How to delete rows from a dataframe that contain n*NA

    – Henrik
    Nov 13 '18 at 20:16













  • It works for you @Henrik?

    – Laura
    Nov 13 '18 at 20:28











  • I haven't tried. I was just suggesting a commonly used (and fast) method for what I thought was your question. Good luck!

    – Henrik
    Nov 13 '18 at 20:28
















1












1








1


1






This is my matrix:



x<-structure(list(Sample_250 = list(`ITUB4~time+ITSA4` = 0.0189772705000679, 
`ITSA4~time+ITUB4` = 0.0172247829378391, `KROT3~time+ESTC3` = 0.362976295896543,
`ESTC3~time+KROT3` = 0.919654541750147, `ELET6~time+ELET3` = 0.563149047013394,
`ELET3~time+ELET6` = 0.938978962441099, `VALE5~time+BRAP4` = 0.00879735041567956,
`BRAP4~time+VALE5` = 0.00327639807633581, `RSID3~time+PDGR3` = 0.537991430220927,
`PDGR3~time+RSID3` = 0.246554103682342, `PDGR3~time+BISA3` = 0.559254391144534,
`BISA3~time+PDGR3` = 0.61031816244403, `VALE5~time+VALE3` = 0.180842743583616,
`VALE3~time+VALE5` = 0.66647273985911, `BRPR3~time+BRML3` = 0.338499489464644,
`BRML3~time+BRPR3` = 0.319063657443075, `PETR4~time+PETR3` = 0.125540460125629,
`PETR3~time+PETR4` = 0.124801328997536, `DTEX3~time+CSAN3` = 0.93868928574058,
`CSAN3~time+DTEX3` = 0.237699406950144, `RSID3~time+BISA3` = 0.449718913669525,
`BISA3~time+RSID3` = 0.7561632200477, `ELPL4~time+ELET3` = 0.174294574975377,
`ELET3~time+ELPL4` = 0.300066723578605, `EVEN3~time+CSAN3` = 0.734452997271797,
`CSAN3~time+EVEN3` = 0.104402290451259, `KROT3~time+CIEL3` = 0.93683315998679,
`CIEL3~time+KROT3` = 0.936544198858508, `MRFG3~time+BISA3` = 0.588077047082012,
`BISA3~time+MRFG3` = 0.241408284405396), Sample_220 = list(
`ITUB4~time+ITSA4` = 0.0173697888550166, `ITSA4~time+ITUB4` = 0.0149942952128483,
`KROT3~time+ESTC3` = 0.482794731209648, `ESTC3~time+KROT3` = 0.890472799194387,
`ELET6~time+ELET3` = 0.289262231792853, `ELET3~time+ELET6` = 0.583772170805346,
`VALE5~time+BRAP4` = 0.0115132699560557, `BRAP4~time+VALE5` = 0.00454387128721931,
`RSID3~time+PDGR3` = 0.701361295124465, `PDGR3~time+RSID3` = 0.276392398580336,
`PDGR3~time+BISA3` = 0.459917895151059, `BISA3~time+PDGR3` = 0.932334809205404,
`VALE5~time+VALE3` = 0.228621489426817, `VALE3~time+VALE5` = 0.599616896543261,
`BRPR3~time+BRML3` = 0.423214373690621, `BRML3~time+BRPR3` = 0.43367402957197,
`PETR4~time+PETR3` = 0.0726218638061883, `PETR3~time+PETR4` = 0.0684556705423691,
`DTEX3~time+CSAN3` = 0.957213428702438, `CSAN3~time+DTEX3` = 0.643249328242026,
`RSID3~time+BISA3` = 0.140702283930701, `BISA3~time+RSID3` = 0.438759561659429,
`ELPL4~time+ELET3` = 0.108415504373493, `ELET3~time+ELPL4` = 0.259235741006097,
`EVEN3~time+CSAN3` = 0.995097190780355, `CSAN3~time+EVEN3` = 0.35833286961364,
`KROT3~time+CIEL3` = 0.883381800410008, `CIEL3~time+KROT3` = 0.58096328992918,
`MRFG3~time+BISA3` = 0.811273794794714, `BISA3~time+MRFG3` = 0.162511686203042),
Sample_200 = list(`ITUB4~time+ITSA4` = 0.0269410475431228,
`ITSA4~time+ITUB4` = 0.0268281043283851, `KROT3~time+ESTC3` = 0.648973944293657,
`ESTC3~time+KROT3` = 0.843925839073412, `ELET6~time+ELET3` = 0.85074648265282,
`ELET3~time+ELET6` = 0.926090646237098, `VALE5~time+BRAP4` = 0.0298988391464108,
`BRAP4~time+VALE5` = 0.0210534678726486, `RSID3~time+PDGR3` = 0.913261323047721,
`PDGR3~time+RSID3` = 0.460744060168818, `PDGR3~time+BISA3` = 0.681848278084124,
`BISA3~time+PDGR3` = 0.700508228924671, `VALE5~time+VALE3` = 0.404824931817606,
`VALE3~time+VALE5` = 0.858492744479535, `BRPR3~time+BRML3` = 0.282313695830455,
`BRML3~time+BRPR3` = 0.421361074266136, `PETR4~time+PETR3` = 0.0389941410401918,
`PETR3~time+PETR4` = 0.0366363568643157, `DTEX3~time+CSAN3` = 0.593381022274927,
`CSAN3~time+DTEX3` = 0.296186622367649, `RSID3~time+BISA3` = 0.136337062156413,
`BISA3~time+RSID3` = 0.253647313739565, `ELPL4~time+ELET3` = 0.0404140463603602,
`ELET3~time+ELPL4` = 0.0584026420525388, `EVEN3~time+CSAN3` = 0.992224496682121,
`CSAN3~time+EVEN3` = 0.364016491282029, `KROT3~time+CIEL3` = 0.923443434909376,
`CIEL3~time+KROT3` = 0.492267643047159, `MRFG3~time+BISA3` = 0.505439622239642,
`BISA3~time+MRFG3` = 0.433741779126583), Sample_180 = list(
`ITUB4~time+ITSA4` = 0.0709729806619366, `ITSA4~time+ITUB4` = 0.0703318148854131,
`KROT3~time+ESTC3` = 0.714222637099451, `ESTC3~time+KROT3` = 0.983192555139107,
`ELET6~time+ELET3` = 0.651446390753224, `ELET3~time+ELET6` = 0.504251519490735,
`VALE5~time+BRAP4` = 0.0655201102796135, `BRAP4~time+VALE5` = 0.064459649024225,
`RSID3~time+PDGR3` = 0.966515813873172, `PDGR3~time+RSID3` = 0.353225059948276,
`PDGR3~time+BISA3` = 0.819582167704402, `BISA3~time+PDGR3` = 0.457403474593761,
`VALE5~time+VALE3` = 0.834891076683459, `VALE3~time+VALE5` = 0.624305154223115,
`BRPR3~time+BRML3` = 0.338684631277372, `BRML3~time+BRPR3` = 0.645983354906404,
`PETR4~time+PETR3` = 0.016615774081754, `PETR3~time+PETR4` = 0.0165629129043023,
`DTEX3~time+CSAN3` = 0.642061011299162, `CSAN3~time+DTEX3` = 0.424690135396935,
`RSID3~time+BISA3` = 0.101897354576195, `BISA3~time+RSID3` = 0.204241392846169,
`ELPL4~time+ELET3` = 0.0729734425567139, `ELET3~time+ELPL4` = 0.128996393897499,
`EVEN3~time+CSAN3` = 0.899884399768484, `CSAN3~time+EVEN3` = 0.146722568327017,
`KROT3~time+CIEL3` = 0.830125914939971, `CIEL3~time+KROT3` = 0.567087012782755,
`MRFG3~time+BISA3` = 0.122725171728208, `BISA3~time+MRFG3` = 0.459448430490008)), row.names = c("ITUB4~time+ITSA4",
"ITSA4~time+ITUB4", "KROT3~time+ESTC3", "ESTC3~time+KROT3", "ELET6~time+ELET3",
"ELET3~time+ELET6", "VALE5~time+BRAP4", "BRAP4~time+VALE5", "RSID3~time+PDGR3",
"PDGR3~time+RSID3", "PDGR3~time+BISA3", "BISA3~time+PDGR3", "VALE5~time+VALE3",
"VALE3~time+VALE5", "BRPR3~time+BRML3", "BRML3~time+BRPR3", "PETR4~time+PETR3",
"PETR3~time+PETR4", "DTEX3~time+CSAN3", "CSAN3~time+DTEX3", "RSID3~time+BISA3",
"BISA3~time+RSID3", "ELPL4~time+ELET3", "ELET3~time+ELPL4", "EVEN3~time+CSAN3",
"CSAN3~time+EVEN3", "KROT3~time+CIEL3", "CIEL3~time+KROT3", "MRFG3~time+BISA3",
"BISA3~time+MRFG3"), class = "data.frame")


1º Question) I want to remove all rows that contain values bellow 0.10. It is necessary that values bellow 0.10 belongs for the 4 columns



2º Question) I want to remove all rows that contain values bellow 0.10 on the first 3 columns.



I tried this:



x[x[1:nrow(x),]<.10,]


Is it possible to do this with a basic function in R?



Any help ?



Thanks










share|improve this question














This is my matrix:



x<-structure(list(Sample_250 = list(`ITUB4~time+ITSA4` = 0.0189772705000679, 
`ITSA4~time+ITUB4` = 0.0172247829378391, `KROT3~time+ESTC3` = 0.362976295896543,
`ESTC3~time+KROT3` = 0.919654541750147, `ELET6~time+ELET3` = 0.563149047013394,
`ELET3~time+ELET6` = 0.938978962441099, `VALE5~time+BRAP4` = 0.00879735041567956,
`BRAP4~time+VALE5` = 0.00327639807633581, `RSID3~time+PDGR3` = 0.537991430220927,
`PDGR3~time+RSID3` = 0.246554103682342, `PDGR3~time+BISA3` = 0.559254391144534,
`BISA3~time+PDGR3` = 0.61031816244403, `VALE5~time+VALE3` = 0.180842743583616,
`VALE3~time+VALE5` = 0.66647273985911, `BRPR3~time+BRML3` = 0.338499489464644,
`BRML3~time+BRPR3` = 0.319063657443075, `PETR4~time+PETR3` = 0.125540460125629,
`PETR3~time+PETR4` = 0.124801328997536, `DTEX3~time+CSAN3` = 0.93868928574058,
`CSAN3~time+DTEX3` = 0.237699406950144, `RSID3~time+BISA3` = 0.449718913669525,
`BISA3~time+RSID3` = 0.7561632200477, `ELPL4~time+ELET3` = 0.174294574975377,
`ELET3~time+ELPL4` = 0.300066723578605, `EVEN3~time+CSAN3` = 0.734452997271797,
`CSAN3~time+EVEN3` = 0.104402290451259, `KROT3~time+CIEL3` = 0.93683315998679,
`CIEL3~time+KROT3` = 0.936544198858508, `MRFG3~time+BISA3` = 0.588077047082012,
`BISA3~time+MRFG3` = 0.241408284405396), Sample_220 = list(
`ITUB4~time+ITSA4` = 0.0173697888550166, `ITSA4~time+ITUB4` = 0.0149942952128483,
`KROT3~time+ESTC3` = 0.482794731209648, `ESTC3~time+KROT3` = 0.890472799194387,
`ELET6~time+ELET3` = 0.289262231792853, `ELET3~time+ELET6` = 0.583772170805346,
`VALE5~time+BRAP4` = 0.0115132699560557, `BRAP4~time+VALE5` = 0.00454387128721931,
`RSID3~time+PDGR3` = 0.701361295124465, `PDGR3~time+RSID3` = 0.276392398580336,
`PDGR3~time+BISA3` = 0.459917895151059, `BISA3~time+PDGR3` = 0.932334809205404,
`VALE5~time+VALE3` = 0.228621489426817, `VALE3~time+VALE5` = 0.599616896543261,
`BRPR3~time+BRML3` = 0.423214373690621, `BRML3~time+BRPR3` = 0.43367402957197,
`PETR4~time+PETR3` = 0.0726218638061883, `PETR3~time+PETR4` = 0.0684556705423691,
`DTEX3~time+CSAN3` = 0.957213428702438, `CSAN3~time+DTEX3` = 0.643249328242026,
`RSID3~time+BISA3` = 0.140702283930701, `BISA3~time+RSID3` = 0.438759561659429,
`ELPL4~time+ELET3` = 0.108415504373493, `ELET3~time+ELPL4` = 0.259235741006097,
`EVEN3~time+CSAN3` = 0.995097190780355, `CSAN3~time+EVEN3` = 0.35833286961364,
`KROT3~time+CIEL3` = 0.883381800410008, `CIEL3~time+KROT3` = 0.58096328992918,
`MRFG3~time+BISA3` = 0.811273794794714, `BISA3~time+MRFG3` = 0.162511686203042),
Sample_200 = list(`ITUB4~time+ITSA4` = 0.0269410475431228,
`ITSA4~time+ITUB4` = 0.0268281043283851, `KROT3~time+ESTC3` = 0.648973944293657,
`ESTC3~time+KROT3` = 0.843925839073412, `ELET6~time+ELET3` = 0.85074648265282,
`ELET3~time+ELET6` = 0.926090646237098, `VALE5~time+BRAP4` = 0.0298988391464108,
`BRAP4~time+VALE5` = 0.0210534678726486, `RSID3~time+PDGR3` = 0.913261323047721,
`PDGR3~time+RSID3` = 0.460744060168818, `PDGR3~time+BISA3` = 0.681848278084124,
`BISA3~time+PDGR3` = 0.700508228924671, `VALE5~time+VALE3` = 0.404824931817606,
`VALE3~time+VALE5` = 0.858492744479535, `BRPR3~time+BRML3` = 0.282313695830455,
`BRML3~time+BRPR3` = 0.421361074266136, `PETR4~time+PETR3` = 0.0389941410401918,
`PETR3~time+PETR4` = 0.0366363568643157, `DTEX3~time+CSAN3` = 0.593381022274927,
`CSAN3~time+DTEX3` = 0.296186622367649, `RSID3~time+BISA3` = 0.136337062156413,
`BISA3~time+RSID3` = 0.253647313739565, `ELPL4~time+ELET3` = 0.0404140463603602,
`ELET3~time+ELPL4` = 0.0584026420525388, `EVEN3~time+CSAN3` = 0.992224496682121,
`CSAN3~time+EVEN3` = 0.364016491282029, `KROT3~time+CIEL3` = 0.923443434909376,
`CIEL3~time+KROT3` = 0.492267643047159, `MRFG3~time+BISA3` = 0.505439622239642,
`BISA3~time+MRFG3` = 0.433741779126583), Sample_180 = list(
`ITUB4~time+ITSA4` = 0.0709729806619366, `ITSA4~time+ITUB4` = 0.0703318148854131,
`KROT3~time+ESTC3` = 0.714222637099451, `ESTC3~time+KROT3` = 0.983192555139107,
`ELET6~time+ELET3` = 0.651446390753224, `ELET3~time+ELET6` = 0.504251519490735,
`VALE5~time+BRAP4` = 0.0655201102796135, `BRAP4~time+VALE5` = 0.064459649024225,
`RSID3~time+PDGR3` = 0.966515813873172, `PDGR3~time+RSID3` = 0.353225059948276,
`PDGR3~time+BISA3` = 0.819582167704402, `BISA3~time+PDGR3` = 0.457403474593761,
`VALE5~time+VALE3` = 0.834891076683459, `VALE3~time+VALE5` = 0.624305154223115,
`BRPR3~time+BRML3` = 0.338684631277372, `BRML3~time+BRPR3` = 0.645983354906404,
`PETR4~time+PETR3` = 0.016615774081754, `PETR3~time+PETR4` = 0.0165629129043023,
`DTEX3~time+CSAN3` = 0.642061011299162, `CSAN3~time+DTEX3` = 0.424690135396935,
`RSID3~time+BISA3` = 0.101897354576195, `BISA3~time+RSID3` = 0.204241392846169,
`ELPL4~time+ELET3` = 0.0729734425567139, `ELET3~time+ELPL4` = 0.128996393897499,
`EVEN3~time+CSAN3` = 0.899884399768484, `CSAN3~time+EVEN3` = 0.146722568327017,
`KROT3~time+CIEL3` = 0.830125914939971, `CIEL3~time+KROT3` = 0.567087012782755,
`MRFG3~time+BISA3` = 0.122725171728208, `BISA3~time+MRFG3` = 0.459448430490008)), row.names = c("ITUB4~time+ITSA4",
"ITSA4~time+ITUB4", "KROT3~time+ESTC3", "ESTC3~time+KROT3", "ELET6~time+ELET3",
"ELET3~time+ELET6", "VALE5~time+BRAP4", "BRAP4~time+VALE5", "RSID3~time+PDGR3",
"PDGR3~time+RSID3", "PDGR3~time+BISA3", "BISA3~time+PDGR3", "VALE5~time+VALE3",
"VALE3~time+VALE5", "BRPR3~time+BRML3", "BRML3~time+BRPR3", "PETR4~time+PETR3",
"PETR3~time+PETR4", "DTEX3~time+CSAN3", "CSAN3~time+DTEX3", "RSID3~time+BISA3",
"BISA3~time+RSID3", "ELPL4~time+ELET3", "ELET3~time+ELPL4", "EVEN3~time+CSAN3",
"CSAN3~time+EVEN3", "KROT3~time+CIEL3", "CIEL3~time+KROT3", "MRFG3~time+BISA3",
"BISA3~time+MRFG3"), class = "data.frame")


1º Question) I want to remove all rows that contain values bellow 0.10. It is necessary that values bellow 0.10 belongs for the 4 columns



2º Question) I want to remove all rows that contain values bellow 0.10 on the first 3 columns.



I tried this:



x[x[1:nrow(x),]<.10,]


Is it possible to do this with a basic function in R?



Any help ?



Thanks







r apply






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 13 '18 at 20:08









LinkmanLinkman

441313




441313








  • 1





    You can use df[rowSums(<condition 1 (what to look for)>) <condition 2 (how many)>] as described e.g. here: How to delete rows from a dataframe that contain n*NA

    – Henrik
    Nov 13 '18 at 20:16













  • It works for you @Henrik?

    – Laura
    Nov 13 '18 at 20:28











  • I haven't tried. I was just suggesting a commonly used (and fast) method for what I thought was your question. Good luck!

    – Henrik
    Nov 13 '18 at 20:28
















  • 1





    You can use df[rowSums(<condition 1 (what to look for)>) <condition 2 (how many)>] as described e.g. here: How to delete rows from a dataframe that contain n*NA

    – Henrik
    Nov 13 '18 at 20:16













  • It works for you @Henrik?

    – Laura
    Nov 13 '18 at 20:28











  • I haven't tried. I was just suggesting a commonly used (and fast) method for what I thought was your question. Good luck!

    – Henrik
    Nov 13 '18 at 20:28










1




1





You can use df[rowSums(<condition 1 (what to look for)>) <condition 2 (how many)>] as described e.g. here: How to delete rows from a dataframe that contain n*NA

– Henrik
Nov 13 '18 at 20:16







You can use df[rowSums(<condition 1 (what to look for)>) <condition 2 (how many)>] as described e.g. here: How to delete rows from a dataframe that contain n*NA

– Henrik
Nov 13 '18 at 20:16















It works for you @Henrik?

– Laura
Nov 13 '18 at 20:28





It works for you @Henrik?

– Laura
Nov 13 '18 at 20:28













I haven't tried. I was just suggesting a commonly used (and fast) method for what I thought was your question. Good luck!

– Henrik
Nov 13 '18 at 20:28







I haven't tried. I was just suggesting a commonly used (and fast) method for what I thought was your question. Good luck!

– Henrik
Nov 13 '18 at 20:28














3 Answers
3






active

oldest

votes


















2














Try for question 1 x[!apply(x, 1, function(x) any(x < .10)), ]



                 Sample_250 Sample_220 Sample_200 Sample_180
KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484


For question 2: x[!apply(x[, 1:3], 1, function(x) any(x < .10)), ]



                 Sample_250 Sample_220 Sample_200 Sample_180
KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484





share|improve this answer


























  • It works for you @ANG? Its not working here

    – Linkman
    Nov 13 '18 at 20:23











  • Sorry you want any, not all

    – ANG
    Nov 13 '18 at 20:29











  • Perfect @ANG! Thanks again!

    – Linkman
    Nov 13 '18 at 20:41



















2














Does this do what you want?



In regards to question 1:



cond1 <- apply(x[,1:3] < 0.1, 1, any) 
y <- x[!cond1, ]
head(x)
# Sample_250 Sample_220 Sample_200 Sample_180
#ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
#ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
#KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
#ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
#ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
#ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515


In regards to question 2:



cond2 <- apply(x < 0.1, 1, all)
z <- x[!cond2, ]
head(y)
# Sample_250 Sample_220 Sample_200 Sample_180
#ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
#ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
#KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
#ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
#ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
#ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515





share|improve this answer


























  • perfect! Thanks!

    – Linkman
    Nov 13 '18 at 20:41



















1














For the first question:



subset(x, apply(x, 1, function(x) all(x > 0.1)) == TRUE)


For the second one:



subset(x, apply(x[, 1:3], 1, function(x) all(x > 0.1)) == TRUE)





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53288721%2fremove-all-rows-tha-contain-values-below-0-10-in-all-row-in-r%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2














    Try for question 1 x[!apply(x, 1, function(x) any(x < .10)), ]



                     Sample_250 Sample_220 Sample_200 Sample_180
    KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
    RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
    PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
    PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
    BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
    VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
    VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
    BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
    BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
    DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
    CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
    RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
    BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
    EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
    CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
    KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
    CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
    MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
    BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484


    For question 2: x[!apply(x[, 1:3], 1, function(x) any(x < .10)), ]



                     Sample_250 Sample_220 Sample_200 Sample_180
    KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
    RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
    PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
    PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
    BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
    VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
    VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
    BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
    BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
    DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
    CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
    RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
    BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
    EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
    CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
    KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
    CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
    MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
    BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484





    share|improve this answer


























    • It works for you @ANG? Its not working here

      – Linkman
      Nov 13 '18 at 20:23











    • Sorry you want any, not all

      – ANG
      Nov 13 '18 at 20:29











    • Perfect @ANG! Thanks again!

      – Linkman
      Nov 13 '18 at 20:41
















    2














    Try for question 1 x[!apply(x, 1, function(x) any(x < .10)), ]



                     Sample_250 Sample_220 Sample_200 Sample_180
    KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
    RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
    PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
    PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
    BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
    VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
    VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
    BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
    BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
    DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
    CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
    RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
    BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
    EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
    CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
    KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
    CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
    MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
    BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484


    For question 2: x[!apply(x[, 1:3], 1, function(x) any(x < .10)), ]



                     Sample_250 Sample_220 Sample_200 Sample_180
    KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
    RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
    PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
    PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
    BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
    VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
    VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
    BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
    BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
    DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
    CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
    RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
    BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
    EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
    CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
    KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
    CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
    MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
    BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484





    share|improve this answer


























    • It works for you @ANG? Its not working here

      – Linkman
      Nov 13 '18 at 20:23











    • Sorry you want any, not all

      – ANG
      Nov 13 '18 at 20:29











    • Perfect @ANG! Thanks again!

      – Linkman
      Nov 13 '18 at 20:41














    2












    2








    2







    Try for question 1 x[!apply(x, 1, function(x) any(x < .10)), ]



                     Sample_250 Sample_220 Sample_200 Sample_180
    KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
    RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
    PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
    PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
    BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
    VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
    VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
    BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
    BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
    DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
    CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
    RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
    BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
    EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
    CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
    KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
    CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
    MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
    BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484


    For question 2: x[!apply(x[, 1:3], 1, function(x) any(x < .10)), ]



                     Sample_250 Sample_220 Sample_200 Sample_180
    KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
    RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
    PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
    PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
    BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
    VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
    VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
    BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
    BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
    DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
    CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
    RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
    BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
    EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
    CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
    KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
    CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
    MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
    BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484





    share|improve this answer















    Try for question 1 x[!apply(x, 1, function(x) any(x < .10)), ]



                     Sample_250 Sample_220 Sample_200 Sample_180
    KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
    RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
    PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
    PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
    BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
    VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
    VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
    BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
    BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
    DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
    CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
    RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
    BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
    EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
    CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
    KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
    CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
    MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
    BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484


    For question 2: x[!apply(x[, 1:3], 1, function(x) any(x < .10)), ]



                     Sample_250 Sample_220 Sample_200 Sample_180
    KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515
    RSID3~time+PDGR3 0.5379914 0.7013613 0.9132613 0.9665158
    PDGR3~time+RSID3 0.2465541 0.2763924 0.4607441 0.3532251
    PDGR3~time+BISA3 0.5592544 0.4599179 0.6818483 0.8195822
    BISA3~time+PDGR3 0.6103182 0.9323348 0.7005082 0.4574035
    VALE5~time+VALE3 0.1808427 0.2286215 0.4048249 0.8348911
    VALE3~time+VALE5 0.6664727 0.5996169 0.8584927 0.6243052
    BRPR3~time+BRML3 0.3384995 0.4232144 0.2823137 0.3386846
    BRML3~time+BRPR3 0.3190637 0.433674 0.4213611 0.6459834
    DTEX3~time+CSAN3 0.9386893 0.9572134 0.593381 0.642061
    CSAN3~time+DTEX3 0.2376994 0.6432493 0.2961866 0.4246901
    RSID3~time+BISA3 0.4497189 0.1407023 0.1363371 0.1018974
    BISA3~time+RSID3 0.7561632 0.4387596 0.2536473 0.2042414
    EVEN3~time+CSAN3 0.734453 0.9950972 0.9922245 0.8998844
    CSAN3~time+EVEN3 0.1044023 0.3583329 0.3640165 0.1467226
    KROT3~time+CIEL3 0.9368332 0.8833818 0.9234434 0.8301259
    CIEL3~time+KROT3 0.9365442 0.5809633 0.4922676 0.567087
    MRFG3~time+BISA3 0.588077 0.8112738 0.5054396 0.1227252
    BISA3~time+MRFG3 0.2414083 0.1625117 0.4337418 0.4594484






    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited Nov 13 '18 at 20:41

























    answered Nov 13 '18 at 20:15









    ANGANG

    4,4612720




    4,4612720













    • It works for you @ANG? Its not working here

      – Linkman
      Nov 13 '18 at 20:23











    • Sorry you want any, not all

      – ANG
      Nov 13 '18 at 20:29











    • Perfect @ANG! Thanks again!

      – Linkman
      Nov 13 '18 at 20:41



















    • It works for you @ANG? Its not working here

      – Linkman
      Nov 13 '18 at 20:23











    • Sorry you want any, not all

      – ANG
      Nov 13 '18 at 20:29











    • Perfect @ANG! Thanks again!

      – Linkman
      Nov 13 '18 at 20:41

















    It works for you @ANG? Its not working here

    – Linkman
    Nov 13 '18 at 20:23





    It works for you @ANG? Its not working here

    – Linkman
    Nov 13 '18 at 20:23













    Sorry you want any, not all

    – ANG
    Nov 13 '18 at 20:29





    Sorry you want any, not all

    – ANG
    Nov 13 '18 at 20:29













    Perfect @ANG! Thanks again!

    – Linkman
    Nov 13 '18 at 20:41





    Perfect @ANG! Thanks again!

    – Linkman
    Nov 13 '18 at 20:41













    2














    Does this do what you want?



    In regards to question 1:



    cond1 <- apply(x[,1:3] < 0.1, 1, any) 
    y <- x[!cond1, ]
    head(x)
    # Sample_250 Sample_220 Sample_200 Sample_180
    #ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
    #ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
    #KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    #ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    #ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    #ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515


    In regards to question 2:



    cond2 <- apply(x < 0.1, 1, all)
    z <- x[!cond2, ]
    head(y)
    # Sample_250 Sample_220 Sample_200 Sample_180
    #ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
    #ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
    #KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    #ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    #ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    #ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515





    share|improve this answer


























    • perfect! Thanks!

      – Linkman
      Nov 13 '18 at 20:41
















    2














    Does this do what you want?



    In regards to question 1:



    cond1 <- apply(x[,1:3] < 0.1, 1, any) 
    y <- x[!cond1, ]
    head(x)
    # Sample_250 Sample_220 Sample_200 Sample_180
    #ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
    #ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
    #KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    #ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    #ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    #ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515


    In regards to question 2:



    cond2 <- apply(x < 0.1, 1, all)
    z <- x[!cond2, ]
    head(y)
    # Sample_250 Sample_220 Sample_200 Sample_180
    #ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
    #ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
    #KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    #ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    #ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    #ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515





    share|improve this answer


























    • perfect! Thanks!

      – Linkman
      Nov 13 '18 at 20:41














    2












    2








    2







    Does this do what you want?



    In regards to question 1:



    cond1 <- apply(x[,1:3] < 0.1, 1, any) 
    y <- x[!cond1, ]
    head(x)
    # Sample_250 Sample_220 Sample_200 Sample_180
    #ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
    #ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
    #KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    #ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    #ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    #ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515


    In regards to question 2:



    cond2 <- apply(x < 0.1, 1, all)
    z <- x[!cond2, ]
    head(y)
    # Sample_250 Sample_220 Sample_200 Sample_180
    #ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
    #ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
    #KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    #ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    #ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    #ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515





    share|improve this answer















    Does this do what you want?



    In regards to question 1:



    cond1 <- apply(x[,1:3] < 0.1, 1, any) 
    y <- x[!cond1, ]
    head(x)
    # Sample_250 Sample_220 Sample_200 Sample_180
    #ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
    #ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
    #KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    #ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    #ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    #ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515


    In regards to question 2:



    cond2 <- apply(x < 0.1, 1, all)
    z <- x[!cond2, ]
    head(y)
    # Sample_250 Sample_220 Sample_200 Sample_180
    #ITUB4~time+ITSA4 0.01897727 0.01736979 0.02694105 0.07097298
    #ITSA4~time+ITUB4 0.01722478 0.0149943 0.0268281 0.07033181
    #KROT3~time+ESTC3 0.3629763 0.4827947 0.6489739 0.7142226
    #ESTC3~time+KROT3 0.9196545 0.8904728 0.8439258 0.9831926
    #ELET6~time+ELET3 0.563149 0.2892622 0.8507465 0.6514464
    #ELET3~time+ELET6 0.938979 0.5837722 0.9260906 0.5042515






    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited Nov 13 '18 at 20:42

























    answered Nov 13 '18 at 20:30









    Anders Ellern BilgrauAnders Ellern Bilgrau

    6,5431730




    6,5431730













    • perfect! Thanks!

      – Linkman
      Nov 13 '18 at 20:41



















    • perfect! Thanks!

      – Linkman
      Nov 13 '18 at 20:41

















    perfect! Thanks!

    – Linkman
    Nov 13 '18 at 20:41





    perfect! Thanks!

    – Linkman
    Nov 13 '18 at 20:41











    1














    For the first question:



    subset(x, apply(x, 1, function(x) all(x > 0.1)) == TRUE)


    For the second one:



    subset(x, apply(x[, 1:3], 1, function(x) all(x > 0.1)) == TRUE)





    share|improve this answer




























      1














      For the first question:



      subset(x, apply(x, 1, function(x) all(x > 0.1)) == TRUE)


      For the second one:



      subset(x, apply(x[, 1:3], 1, function(x) all(x > 0.1)) == TRUE)





      share|improve this answer


























        1












        1








        1







        For the first question:



        subset(x, apply(x, 1, function(x) all(x > 0.1)) == TRUE)


        For the second one:



        subset(x, apply(x[, 1:3], 1, function(x) all(x > 0.1)) == TRUE)





        share|improve this answer













        For the first question:



        subset(x, apply(x, 1, function(x) all(x > 0.1)) == TRUE)


        For the second one:



        subset(x, apply(x[, 1:3], 1, function(x) all(x > 0.1)) == TRUE)






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 13 '18 at 20:40









        tmfmnktmfmnk

        2,5491412




        2,5491412






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53288721%2fremove-all-rows-tha-contain-values-below-0-10-in-all-row-in-r%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Full-time equivalent

            さくらももこ

            13 indicted, 8 arrested in Calif. drug cartel investigation