Newton interpolation in python using matplotlib
I want to use matplotlib to draw a picture of Newton interpolation, but I met with some difficulties. My figure don't through the last some points. Can you help me? If my code is wrong, please tell me the details, thank you.
import numpy as np
import matplotlib.pyplot as plt
def coef(x, y):
'''x : array of data points
y : array of f(x) '''
x.astype(float)
y.astype(float)
n = len(x)
a =
for i in range(n):
a.append(y[i])
for j in range(1, n):
for i in range(n - 1, j - 1, -1):
a[i] = float(a[i] - a[i - 1]) / float(x[i] - x[i - j])
return np.array(a) # return an array of coefficient
def Eval(a, x, r):
''' a : array returned by function coef()
x : array of data points
r : the node to interpolate at '''
x.astype(float)
n = len(a) - 1
temp = a[n]
for i in range(n - 1, -1, -1):
temp = temp * (r - x[i]) + a[i]
return temp # return the y_value interpolation
if __name__ == '__main__':
x = np.linspace(0, 20, 11)
y = np.random.randint(0, 10, 11)
# y = np.asarray([i ** 2 for i in x])
a = coef(x, y)
tmp_x = np.linspace(0, 21, 21)
tmp_y = [Eval(a, tmp_x, i) for i in tmp_x]
plt.plot(x, y, linestyle='', marker='o', color='b')
plt.plot(tmp_x, tmp_y, linestyle='--', color='r')
plt.show()
picture of code
python matplotlib
add a comment |
I want to use matplotlib to draw a picture of Newton interpolation, but I met with some difficulties. My figure don't through the last some points. Can you help me? If my code is wrong, please tell me the details, thank you.
import numpy as np
import matplotlib.pyplot as plt
def coef(x, y):
'''x : array of data points
y : array of f(x) '''
x.astype(float)
y.astype(float)
n = len(x)
a =
for i in range(n):
a.append(y[i])
for j in range(1, n):
for i in range(n - 1, j - 1, -1):
a[i] = float(a[i] - a[i - 1]) / float(x[i] - x[i - j])
return np.array(a) # return an array of coefficient
def Eval(a, x, r):
''' a : array returned by function coef()
x : array of data points
r : the node to interpolate at '''
x.astype(float)
n = len(a) - 1
temp = a[n]
for i in range(n - 1, -1, -1):
temp = temp * (r - x[i]) + a[i]
return temp # return the y_value interpolation
if __name__ == '__main__':
x = np.linspace(0, 20, 11)
y = np.random.randint(0, 10, 11)
# y = np.asarray([i ** 2 for i in x])
a = coef(x, y)
tmp_x = np.linspace(0, 21, 21)
tmp_y = [Eval(a, tmp_x, i) for i in tmp_x]
plt.plot(x, y, linestyle='', marker='o', color='b')
plt.plot(tmp_x, tmp_y, linestyle='--', color='r')
plt.show()
picture of code
python matplotlib
add a comment |
I want to use matplotlib to draw a picture of Newton interpolation, but I met with some difficulties. My figure don't through the last some points. Can you help me? If my code is wrong, please tell me the details, thank you.
import numpy as np
import matplotlib.pyplot as plt
def coef(x, y):
'''x : array of data points
y : array of f(x) '''
x.astype(float)
y.astype(float)
n = len(x)
a =
for i in range(n):
a.append(y[i])
for j in range(1, n):
for i in range(n - 1, j - 1, -1):
a[i] = float(a[i] - a[i - 1]) / float(x[i] - x[i - j])
return np.array(a) # return an array of coefficient
def Eval(a, x, r):
''' a : array returned by function coef()
x : array of data points
r : the node to interpolate at '''
x.astype(float)
n = len(a) - 1
temp = a[n]
for i in range(n - 1, -1, -1):
temp = temp * (r - x[i]) + a[i]
return temp # return the y_value interpolation
if __name__ == '__main__':
x = np.linspace(0, 20, 11)
y = np.random.randint(0, 10, 11)
# y = np.asarray([i ** 2 for i in x])
a = coef(x, y)
tmp_x = np.linspace(0, 21, 21)
tmp_y = [Eval(a, tmp_x, i) for i in tmp_x]
plt.plot(x, y, linestyle='', marker='o', color='b')
plt.plot(tmp_x, tmp_y, linestyle='--', color='r')
plt.show()
picture of code
python matplotlib
I want to use matplotlib to draw a picture of Newton interpolation, but I met with some difficulties. My figure don't through the last some points. Can you help me? If my code is wrong, please tell me the details, thank you.
import numpy as np
import matplotlib.pyplot as plt
def coef(x, y):
'''x : array of data points
y : array of f(x) '''
x.astype(float)
y.astype(float)
n = len(x)
a =
for i in range(n):
a.append(y[i])
for j in range(1, n):
for i in range(n - 1, j - 1, -1):
a[i] = float(a[i] - a[i - 1]) / float(x[i] - x[i - j])
return np.array(a) # return an array of coefficient
def Eval(a, x, r):
''' a : array returned by function coef()
x : array of data points
r : the node to interpolate at '''
x.astype(float)
n = len(a) - 1
temp = a[n]
for i in range(n - 1, -1, -1):
temp = temp * (r - x[i]) + a[i]
return temp # return the y_value interpolation
if __name__ == '__main__':
x = np.linspace(0, 20, 11)
y = np.random.randint(0, 10, 11)
# y = np.asarray([i ** 2 for i in x])
a = coef(x, y)
tmp_x = np.linspace(0, 21, 21)
tmp_y = [Eval(a, tmp_x, i) for i in tmp_x]
plt.plot(x, y, linestyle='', marker='o', color='b')
plt.plot(tmp_x, tmp_y, linestyle='--', color='r')
plt.show()
picture of code
python matplotlib
python matplotlib
asked Nov 12 '18 at 17:05
CarlCarl
11
11
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
OK, I had solve my problem after reading some paper about Newton Interprolation. But the comments are written in Chinese, when I have time, I will translate it into Engilsh.
image of Newton Interpolation
import numpy as np
import matplotlib.pyplot as plt
class Newton(object):
def __init__(self, x, y):
self.x = x
self.y = y
def run(self, tmp_x):
# 构造差商表
table = np.zeros([len(self.x), len(self.x) + 1], dtype=float)
for i in range(len(self.x)): # 将x 和 y 放入 差商表的前两列
table[i][0] = self.x[i]
table[i][1] = self.y[i]
# 计算差商
for i in range(2, table.shape[1]): # i is 2 to 5
for j in range(i - 1, table.shape[0]): # j is
table[j][i] = (table[j][i - 1] - table[j - 1][i - 1]) / (self.x[j] - self.x[j - i + 1])
# print(table) # 输出差商表
# for i in range(table.shape[0]):
# for j in range(table.shape[1]):
# print(table[i][j], end=' ')
# print('n')
# print('nn')
# 由牛顿插值函数求给出的x序列对应的y序列
tmp_y =
for ans_x in tmp_x: # 遍历每个x
ans_y = 0 # 对应于输入序列每个x的相应y值
for i in range(table.shape[0]):
tmp = table[i][i + 1] # 求值多项式第 i 项, tab[i][i + 1]为其系数
for j in range(i):
tmp *= (ans_x - self.x[j])
ans_y += tmp
tmp_y.append(ans_y)
return tmp_y
if __name__ == '__main__':
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
sr_x = np.linspace(0, 20, 11)
sr_fx = np.random.randint(0, 20, 11)
tmp_x = np.linspace(0, 20)
demo = Newton(sr_x, sr_fx)
tmp_y = demo.run(tmp_x)
print(tmp_x)
print(tmp_y)
plt.plot(sr_x, sr_fx, 'ro', label='插值节点')
plt.plot(tmp_x, tmp_y, label='牛顿插值')
enter code here
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53266900%2fnewton-interpolation-in-python-using-matplotlib%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
OK, I had solve my problem after reading some paper about Newton Interprolation. But the comments are written in Chinese, when I have time, I will translate it into Engilsh.
image of Newton Interpolation
import numpy as np
import matplotlib.pyplot as plt
class Newton(object):
def __init__(self, x, y):
self.x = x
self.y = y
def run(self, tmp_x):
# 构造差商表
table = np.zeros([len(self.x), len(self.x) + 1], dtype=float)
for i in range(len(self.x)): # 将x 和 y 放入 差商表的前两列
table[i][0] = self.x[i]
table[i][1] = self.y[i]
# 计算差商
for i in range(2, table.shape[1]): # i is 2 to 5
for j in range(i - 1, table.shape[0]): # j is
table[j][i] = (table[j][i - 1] - table[j - 1][i - 1]) / (self.x[j] - self.x[j - i + 1])
# print(table) # 输出差商表
# for i in range(table.shape[0]):
# for j in range(table.shape[1]):
# print(table[i][j], end=' ')
# print('n')
# print('nn')
# 由牛顿插值函数求给出的x序列对应的y序列
tmp_y =
for ans_x in tmp_x: # 遍历每个x
ans_y = 0 # 对应于输入序列每个x的相应y值
for i in range(table.shape[0]):
tmp = table[i][i + 1] # 求值多项式第 i 项, tab[i][i + 1]为其系数
for j in range(i):
tmp *= (ans_x - self.x[j])
ans_y += tmp
tmp_y.append(ans_y)
return tmp_y
if __name__ == '__main__':
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
sr_x = np.linspace(0, 20, 11)
sr_fx = np.random.randint(0, 20, 11)
tmp_x = np.linspace(0, 20)
demo = Newton(sr_x, sr_fx)
tmp_y = demo.run(tmp_x)
print(tmp_x)
print(tmp_y)
plt.plot(sr_x, sr_fx, 'ro', label='插值节点')
plt.plot(tmp_x, tmp_y, label='牛顿插值')
enter code here
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
add a comment |
OK, I had solve my problem after reading some paper about Newton Interprolation. But the comments are written in Chinese, when I have time, I will translate it into Engilsh.
image of Newton Interpolation
import numpy as np
import matplotlib.pyplot as plt
class Newton(object):
def __init__(self, x, y):
self.x = x
self.y = y
def run(self, tmp_x):
# 构造差商表
table = np.zeros([len(self.x), len(self.x) + 1], dtype=float)
for i in range(len(self.x)): # 将x 和 y 放入 差商表的前两列
table[i][0] = self.x[i]
table[i][1] = self.y[i]
# 计算差商
for i in range(2, table.shape[1]): # i is 2 to 5
for j in range(i - 1, table.shape[0]): # j is
table[j][i] = (table[j][i - 1] - table[j - 1][i - 1]) / (self.x[j] - self.x[j - i + 1])
# print(table) # 输出差商表
# for i in range(table.shape[0]):
# for j in range(table.shape[1]):
# print(table[i][j], end=' ')
# print('n')
# print('nn')
# 由牛顿插值函数求给出的x序列对应的y序列
tmp_y =
for ans_x in tmp_x: # 遍历每个x
ans_y = 0 # 对应于输入序列每个x的相应y值
for i in range(table.shape[0]):
tmp = table[i][i + 1] # 求值多项式第 i 项, tab[i][i + 1]为其系数
for j in range(i):
tmp *= (ans_x - self.x[j])
ans_y += tmp
tmp_y.append(ans_y)
return tmp_y
if __name__ == '__main__':
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
sr_x = np.linspace(0, 20, 11)
sr_fx = np.random.randint(0, 20, 11)
tmp_x = np.linspace(0, 20)
demo = Newton(sr_x, sr_fx)
tmp_y = demo.run(tmp_x)
print(tmp_x)
print(tmp_y)
plt.plot(sr_x, sr_fx, 'ro', label='插值节点')
plt.plot(tmp_x, tmp_y, label='牛顿插值')
enter code here
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
add a comment |
OK, I had solve my problem after reading some paper about Newton Interprolation. But the comments are written in Chinese, when I have time, I will translate it into Engilsh.
image of Newton Interpolation
import numpy as np
import matplotlib.pyplot as plt
class Newton(object):
def __init__(self, x, y):
self.x = x
self.y = y
def run(self, tmp_x):
# 构造差商表
table = np.zeros([len(self.x), len(self.x) + 1], dtype=float)
for i in range(len(self.x)): # 将x 和 y 放入 差商表的前两列
table[i][0] = self.x[i]
table[i][1] = self.y[i]
# 计算差商
for i in range(2, table.shape[1]): # i is 2 to 5
for j in range(i - 1, table.shape[0]): # j is
table[j][i] = (table[j][i - 1] - table[j - 1][i - 1]) / (self.x[j] - self.x[j - i + 1])
# print(table) # 输出差商表
# for i in range(table.shape[0]):
# for j in range(table.shape[1]):
# print(table[i][j], end=' ')
# print('n')
# print('nn')
# 由牛顿插值函数求给出的x序列对应的y序列
tmp_y =
for ans_x in tmp_x: # 遍历每个x
ans_y = 0 # 对应于输入序列每个x的相应y值
for i in range(table.shape[0]):
tmp = table[i][i + 1] # 求值多项式第 i 项, tab[i][i + 1]为其系数
for j in range(i):
tmp *= (ans_x - self.x[j])
ans_y += tmp
tmp_y.append(ans_y)
return tmp_y
if __name__ == '__main__':
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
sr_x = np.linspace(0, 20, 11)
sr_fx = np.random.randint(0, 20, 11)
tmp_x = np.linspace(0, 20)
demo = Newton(sr_x, sr_fx)
tmp_y = demo.run(tmp_x)
print(tmp_x)
print(tmp_y)
plt.plot(sr_x, sr_fx, 'ro', label='插值节点')
plt.plot(tmp_x, tmp_y, label='牛顿插值')
enter code here
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
OK, I had solve my problem after reading some paper about Newton Interprolation. But the comments are written in Chinese, when I have time, I will translate it into Engilsh.
image of Newton Interpolation
import numpy as np
import matplotlib.pyplot as plt
class Newton(object):
def __init__(self, x, y):
self.x = x
self.y = y
def run(self, tmp_x):
# 构造差商表
table = np.zeros([len(self.x), len(self.x) + 1], dtype=float)
for i in range(len(self.x)): # 将x 和 y 放入 差商表的前两列
table[i][0] = self.x[i]
table[i][1] = self.y[i]
# 计算差商
for i in range(2, table.shape[1]): # i is 2 to 5
for j in range(i - 1, table.shape[0]): # j is
table[j][i] = (table[j][i - 1] - table[j - 1][i - 1]) / (self.x[j] - self.x[j - i + 1])
# print(table) # 输出差商表
# for i in range(table.shape[0]):
# for j in range(table.shape[1]):
# print(table[i][j], end=' ')
# print('n')
# print('nn')
# 由牛顿插值函数求给出的x序列对应的y序列
tmp_y =
for ans_x in tmp_x: # 遍历每个x
ans_y = 0 # 对应于输入序列每个x的相应y值
for i in range(table.shape[0]):
tmp = table[i][i + 1] # 求值多项式第 i 项, tab[i][i + 1]为其系数
for j in range(i):
tmp *= (ans_x - self.x[j])
ans_y += tmp
tmp_y.append(ans_y)
return tmp_y
if __name__ == '__main__':
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
sr_x = np.linspace(0, 20, 11)
sr_fx = np.random.randint(0, 20, 11)
tmp_x = np.linspace(0, 20)
demo = Newton(sr_x, sr_fx)
tmp_y = demo.run(tmp_x)
print(tmp_x)
print(tmp_y)
plt.plot(sr_x, sr_fx, 'ro', label='插值节点')
plt.plot(tmp_x, tmp_y, label='牛顿插值')
enter code here
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
answered Nov 14 '18 at 12:48
CarlCarl
11
11
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53266900%2fnewton-interpolation-in-python-using-matplotlib%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown