Validating Fuzzy Clustering
I would like to use fuzzy C-means clustering on a large unsupervided data set of 41 variables and 415 observations. However, I am stuck on trying to validate those clusters. When I plot with a random number of clusters, I can explain a total of 54% of the variance, which is not great and there are no really nice clusters as their would be with the iris
database for example.
First I ran the fcm
with my scales data on 3 clusters just to see, but if I am trying to find way to search for the optimal number of clusters, then I do not want to set an arbitrary defined number of clusters.
So I turned to google and googled: "valdiate fuzzy clustering in R." This link here was good, but I still have to try a bunch of different numbers of clusters. I looked at the advclust
, ppclust
, and clvalid
packages but I could not find a walkthrough for the functions. I looked at the documentation of each package, but also could not discern what to do next.
I walked through some possible number of clusters and checked each one with the k.crisp
object from fanny. I started with 100 and got down to 4. Based on object description in the documentation,
k.crisp=integer ( ≤ k ) giving the number of crisp clusters; can be less than
k , where it's recommended to decrease memb.exp.
it doesn't seem like a valid way because it is comparing the number of crisp clusters to our fuzzy clusters.
Is there a function where I can check the validity of my clusters from 2:10
clusters? Also, is it worth while to check the validity of 1 cluster? I think that is a stupid question, but I have a strange feeling 1 optimal cluster might be what I get. (Any tips on what to do if I were to get 1 cluster besides cry a little on the inside?)
Code
library(cluster)
library(factoextra)
library(ppclust)
library(advclust)
library(clValid)
data(iris)
df<-sapply(iris[-5],scale)
res.fanny<-fanny(df,3,metric='SqEuclidean')
res.fanny$k.crisp
# When I try to use euclidean, I get the warning all memberships are very close to 1/l. Maybe increase memb.exp, which I don't fully understand
# From my understanding using the SqEuclidean is equivalent to Fuzzy C-means, use the website below. Ultimately I do want to use C-means, hence I use the SqEuclidean distance
fviz_cluster(Res.fanny,ellipse.type='norm',palette='jco',ggtheme=theme_minimal(),legend='right')
fviz_silhouette(res.fanny,palette='jco',ggtheme=theme_minimal())
# With ppclust
set.seed(123)
res.fcm<-fcm(df,centers=3,nstart=10)
website as mentioned above.
r validation cluster-analysis
add a comment |
I would like to use fuzzy C-means clustering on a large unsupervided data set of 41 variables and 415 observations. However, I am stuck on trying to validate those clusters. When I plot with a random number of clusters, I can explain a total of 54% of the variance, which is not great and there are no really nice clusters as their would be with the iris
database for example.
First I ran the fcm
with my scales data on 3 clusters just to see, but if I am trying to find way to search for the optimal number of clusters, then I do not want to set an arbitrary defined number of clusters.
So I turned to google and googled: "valdiate fuzzy clustering in R." This link here was good, but I still have to try a bunch of different numbers of clusters. I looked at the advclust
, ppclust
, and clvalid
packages but I could not find a walkthrough for the functions. I looked at the documentation of each package, but also could not discern what to do next.
I walked through some possible number of clusters and checked each one with the k.crisp
object from fanny. I started with 100 and got down to 4. Based on object description in the documentation,
k.crisp=integer ( ≤ k ) giving the number of crisp clusters; can be less than
k , where it's recommended to decrease memb.exp.
it doesn't seem like a valid way because it is comparing the number of crisp clusters to our fuzzy clusters.
Is there a function where I can check the validity of my clusters from 2:10
clusters? Also, is it worth while to check the validity of 1 cluster? I think that is a stupid question, but I have a strange feeling 1 optimal cluster might be what I get. (Any tips on what to do if I were to get 1 cluster besides cry a little on the inside?)
Code
library(cluster)
library(factoextra)
library(ppclust)
library(advclust)
library(clValid)
data(iris)
df<-sapply(iris[-5],scale)
res.fanny<-fanny(df,3,metric='SqEuclidean')
res.fanny$k.crisp
# When I try to use euclidean, I get the warning all memberships are very close to 1/l. Maybe increase memb.exp, which I don't fully understand
# From my understanding using the SqEuclidean is equivalent to Fuzzy C-means, use the website below. Ultimately I do want to use C-means, hence I use the SqEuclidean distance
fviz_cluster(Res.fanny,ellipse.type='norm',palette='jco',ggtheme=theme_minimal(),legend='right')
fviz_silhouette(res.fanny,palette='jco',ggtheme=theme_minimal())
# With ppclust
set.seed(123)
res.fcm<-fcm(df,centers=3,nstart=10)
website as mentioned above.
r validation cluster-analysis
add a comment |
I would like to use fuzzy C-means clustering on a large unsupervided data set of 41 variables and 415 observations. However, I am stuck on trying to validate those clusters. When I plot with a random number of clusters, I can explain a total of 54% of the variance, which is not great and there are no really nice clusters as their would be with the iris
database for example.
First I ran the fcm
with my scales data on 3 clusters just to see, but if I am trying to find way to search for the optimal number of clusters, then I do not want to set an arbitrary defined number of clusters.
So I turned to google and googled: "valdiate fuzzy clustering in R." This link here was good, but I still have to try a bunch of different numbers of clusters. I looked at the advclust
, ppclust
, and clvalid
packages but I could not find a walkthrough for the functions. I looked at the documentation of each package, but also could not discern what to do next.
I walked through some possible number of clusters and checked each one with the k.crisp
object from fanny. I started with 100 and got down to 4. Based on object description in the documentation,
k.crisp=integer ( ≤ k ) giving the number of crisp clusters; can be less than
k , where it's recommended to decrease memb.exp.
it doesn't seem like a valid way because it is comparing the number of crisp clusters to our fuzzy clusters.
Is there a function where I can check the validity of my clusters from 2:10
clusters? Also, is it worth while to check the validity of 1 cluster? I think that is a stupid question, but I have a strange feeling 1 optimal cluster might be what I get. (Any tips on what to do if I were to get 1 cluster besides cry a little on the inside?)
Code
library(cluster)
library(factoextra)
library(ppclust)
library(advclust)
library(clValid)
data(iris)
df<-sapply(iris[-5],scale)
res.fanny<-fanny(df,3,metric='SqEuclidean')
res.fanny$k.crisp
# When I try to use euclidean, I get the warning all memberships are very close to 1/l. Maybe increase memb.exp, which I don't fully understand
# From my understanding using the SqEuclidean is equivalent to Fuzzy C-means, use the website below. Ultimately I do want to use C-means, hence I use the SqEuclidean distance
fviz_cluster(Res.fanny,ellipse.type='norm',palette='jco',ggtheme=theme_minimal(),legend='right')
fviz_silhouette(res.fanny,palette='jco',ggtheme=theme_minimal())
# With ppclust
set.seed(123)
res.fcm<-fcm(df,centers=3,nstart=10)
website as mentioned above.
r validation cluster-analysis
I would like to use fuzzy C-means clustering on a large unsupervided data set of 41 variables and 415 observations. However, I am stuck on trying to validate those clusters. When I plot with a random number of clusters, I can explain a total of 54% of the variance, which is not great and there are no really nice clusters as their would be with the iris
database for example.
First I ran the fcm
with my scales data on 3 clusters just to see, but if I am trying to find way to search for the optimal number of clusters, then I do not want to set an arbitrary defined number of clusters.
So I turned to google and googled: "valdiate fuzzy clustering in R." This link here was good, but I still have to try a bunch of different numbers of clusters. I looked at the advclust
, ppclust
, and clvalid
packages but I could not find a walkthrough for the functions. I looked at the documentation of each package, but also could not discern what to do next.
I walked through some possible number of clusters and checked each one with the k.crisp
object from fanny. I started with 100 and got down to 4. Based on object description in the documentation,
k.crisp=integer ( ≤ k ) giving the number of crisp clusters; can be less than
k , where it's recommended to decrease memb.exp.
it doesn't seem like a valid way because it is comparing the number of crisp clusters to our fuzzy clusters.
Is there a function where I can check the validity of my clusters from 2:10
clusters? Also, is it worth while to check the validity of 1 cluster? I think that is a stupid question, but I have a strange feeling 1 optimal cluster might be what I get. (Any tips on what to do if I were to get 1 cluster besides cry a little on the inside?)
Code
library(cluster)
library(factoextra)
library(ppclust)
library(advclust)
library(clValid)
data(iris)
df<-sapply(iris[-5],scale)
res.fanny<-fanny(df,3,metric='SqEuclidean')
res.fanny$k.crisp
# When I try to use euclidean, I get the warning all memberships are very close to 1/l. Maybe increase memb.exp, which I don't fully understand
# From my understanding using the SqEuclidean is equivalent to Fuzzy C-means, use the website below. Ultimately I do want to use C-means, hence I use the SqEuclidean distance
fviz_cluster(Res.fanny,ellipse.type='norm',palette='jco',ggtheme=theme_minimal(),legend='right')
fviz_silhouette(res.fanny,palette='jco',ggtheme=theme_minimal())
# With ppclust
set.seed(123)
res.fcm<-fcm(df,centers=3,nstart=10)
website as mentioned above.
r validation cluster-analysis
r validation cluster-analysis
edited Nov 13 '18 at 7:16
Jack Armstrong
asked Nov 12 '18 at 23:09
Jack ArmstrongJack Armstrong
318519
318519
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
As far as I know, you need to go through different number of clusters and see how the percentage of variance explained is changing with different number of clusters. This method is called elbow method.
wss <- sapply(2:10,
function(k){fcm(df,centers=k,nstart=10)$sumsqrs$tot.within.ss})
plot(2:10, wss,
type="b", pch = 19, frame = FALSE,
xlab="Number of clusters K",
ylab="Total within-clusters sum of squares")
The resulting plot is
After k = 5, total within cluster sum of squares tend to change slowly. So, k = 5 is a good candidate for being optimal number of clusters according to elbow method.
I am looking more for a formal method. But also isn't that using K-means clustering?
– Jack Armstrong
Nov 13 '18 at 10:19
1
The objective is similar so I think that we can use this method. Please check this paper, researchgate.net/publication/… They are using k = 1 as null hypothesis and use some kind of measure and look for an "elbow" on a graph.
– boyaronur
Nov 13 '18 at 10:53
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53271424%2fvalidating-fuzzy-clustering%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
As far as I know, you need to go through different number of clusters and see how the percentage of variance explained is changing with different number of clusters. This method is called elbow method.
wss <- sapply(2:10,
function(k){fcm(df,centers=k,nstart=10)$sumsqrs$tot.within.ss})
plot(2:10, wss,
type="b", pch = 19, frame = FALSE,
xlab="Number of clusters K",
ylab="Total within-clusters sum of squares")
The resulting plot is
After k = 5, total within cluster sum of squares tend to change slowly. So, k = 5 is a good candidate for being optimal number of clusters according to elbow method.
I am looking more for a formal method. But also isn't that using K-means clustering?
– Jack Armstrong
Nov 13 '18 at 10:19
1
The objective is similar so I think that we can use this method. Please check this paper, researchgate.net/publication/… They are using k = 1 as null hypothesis and use some kind of measure and look for an "elbow" on a graph.
– boyaronur
Nov 13 '18 at 10:53
add a comment |
As far as I know, you need to go through different number of clusters and see how the percentage of variance explained is changing with different number of clusters. This method is called elbow method.
wss <- sapply(2:10,
function(k){fcm(df,centers=k,nstart=10)$sumsqrs$tot.within.ss})
plot(2:10, wss,
type="b", pch = 19, frame = FALSE,
xlab="Number of clusters K",
ylab="Total within-clusters sum of squares")
The resulting plot is
After k = 5, total within cluster sum of squares tend to change slowly. So, k = 5 is a good candidate for being optimal number of clusters according to elbow method.
I am looking more for a formal method. But also isn't that using K-means clustering?
– Jack Armstrong
Nov 13 '18 at 10:19
1
The objective is similar so I think that we can use this method. Please check this paper, researchgate.net/publication/… They are using k = 1 as null hypothesis and use some kind of measure and look for an "elbow" on a graph.
– boyaronur
Nov 13 '18 at 10:53
add a comment |
As far as I know, you need to go through different number of clusters and see how the percentage of variance explained is changing with different number of clusters. This method is called elbow method.
wss <- sapply(2:10,
function(k){fcm(df,centers=k,nstart=10)$sumsqrs$tot.within.ss})
plot(2:10, wss,
type="b", pch = 19, frame = FALSE,
xlab="Number of clusters K",
ylab="Total within-clusters sum of squares")
The resulting plot is
After k = 5, total within cluster sum of squares tend to change slowly. So, k = 5 is a good candidate for being optimal number of clusters according to elbow method.
As far as I know, you need to go through different number of clusters and see how the percentage of variance explained is changing with different number of clusters. This method is called elbow method.
wss <- sapply(2:10,
function(k){fcm(df,centers=k,nstart=10)$sumsqrs$tot.within.ss})
plot(2:10, wss,
type="b", pch = 19, frame = FALSE,
xlab="Number of clusters K",
ylab="Total within-clusters sum of squares")
The resulting plot is
After k = 5, total within cluster sum of squares tend to change slowly. So, k = 5 is a good candidate for being optimal number of clusters according to elbow method.
answered Nov 13 '18 at 9:16
boyaronurboyaronur
17419
17419
I am looking more for a formal method. But also isn't that using K-means clustering?
– Jack Armstrong
Nov 13 '18 at 10:19
1
The objective is similar so I think that we can use this method. Please check this paper, researchgate.net/publication/… They are using k = 1 as null hypothesis and use some kind of measure and look for an "elbow" on a graph.
– boyaronur
Nov 13 '18 at 10:53
add a comment |
I am looking more for a formal method. But also isn't that using K-means clustering?
– Jack Armstrong
Nov 13 '18 at 10:19
1
The objective is similar so I think that we can use this method. Please check this paper, researchgate.net/publication/… They are using k = 1 as null hypothesis and use some kind of measure and look for an "elbow" on a graph.
– boyaronur
Nov 13 '18 at 10:53
I am looking more for a formal method. But also isn't that using K-means clustering?
– Jack Armstrong
Nov 13 '18 at 10:19
I am looking more for a formal method. But also isn't that using K-means clustering?
– Jack Armstrong
Nov 13 '18 at 10:19
1
1
The objective is similar so I think that we can use this method. Please check this paper, researchgate.net/publication/… They are using k = 1 as null hypothesis and use some kind of measure and look for an "elbow" on a graph.
– boyaronur
Nov 13 '18 at 10:53
The objective is similar so I think that we can use this method. Please check this paper, researchgate.net/publication/… They are using k = 1 as null hypothesis and use some kind of measure and look for an "elbow" on a graph.
– boyaronur
Nov 13 '18 at 10:53
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53271424%2fvalidating-fuzzy-clustering%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown