find index of largest difference from median with numpy












1















I'm trying to find the index number of the outlier number. based on difference from median
I'm able to get the correct high number, but whenever the low number is the outlier I only get the high number..



import numpy as np

def findoutlier(lis):

outliermax = np.absolute(np.max(lis) - np.median(lis))
outliermin = np.absolute(np.min(lis) - np.median(lis))
if outliermax > outliermin:
argmax = np.argmax(lis, axis = 1)
return argmax
else:
argmin = np.argmin(lis, axis = 1)
return argmin

def main():
Matx = np.array([[10,3,2],[1,2,6]])
print(findoutlier(Matx))

threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
print(findoutlier(threeMatx))

main()









share|improve this question



























    1















    I'm trying to find the index number of the outlier number. based on difference from median
    I'm able to get the correct high number, but whenever the low number is the outlier I only get the high number..



    import numpy as np

    def findoutlier(lis):

    outliermax = np.absolute(np.max(lis) - np.median(lis))
    outliermin = np.absolute(np.min(lis) - np.median(lis))
    if outliermax > outliermin:
    argmax = np.argmax(lis, axis = 1)
    return argmax
    else:
    argmin = np.argmin(lis, axis = 1)
    return argmin

    def main():
    Matx = np.array([[10,3,2],[1,2,6]])
    print(findoutlier(Matx))

    threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
    print(findoutlier(threeMatx))

    main()









    share|improve this question

























      1












      1








      1








      I'm trying to find the index number of the outlier number. based on difference from median
      I'm able to get the correct high number, but whenever the low number is the outlier I only get the high number..



      import numpy as np

      def findoutlier(lis):

      outliermax = np.absolute(np.max(lis) - np.median(lis))
      outliermin = np.absolute(np.min(lis) - np.median(lis))
      if outliermax > outliermin:
      argmax = np.argmax(lis, axis = 1)
      return argmax
      else:
      argmin = np.argmin(lis, axis = 1)
      return argmin

      def main():
      Matx = np.array([[10,3,2],[1,2,6]])
      print(findoutlier(Matx))

      threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
      print(findoutlier(threeMatx))

      main()









      share|improve this question














      I'm trying to find the index number of the outlier number. based on difference from median
      I'm able to get the correct high number, but whenever the low number is the outlier I only get the high number..



      import numpy as np

      def findoutlier(lis):

      outliermax = np.absolute(np.max(lis) - np.median(lis))
      outliermin = np.absolute(np.min(lis) - np.median(lis))
      if outliermax > outliermin:
      argmax = np.argmax(lis, axis = 1)
      return argmax
      else:
      argmin = np.argmin(lis, axis = 1)
      return argmin

      def main():
      Matx = np.array([[10,3,2],[1,2,6]])
      print(findoutlier(Matx))

      threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
      print(findoutlier(threeMatx))

      main()






      python numpy functional-programming median argmax






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 12 '18 at 23:04









      CluelessClueless

      275




      275
























          1 Answer
          1






          active

          oldest

          votes


















          1














          You need to specify the axis when using median, max and min:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))


          Output



          [0, 2]
          [1, 0, 0]


          UPDATE



          As mentioned by @user3483203 you can use numpy.where:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))

          main()


          Output



          [0 2]
          [1 0 0]





          share|improve this answer


























          • Don't mix a list comprehension with vectorized operations. numpy.where is a much faster solution.

            – user3483203
            Nov 13 '18 at 0:00











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53271381%2ffind-index-of-largest-difference-from-median-with-numpy%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          You need to specify the axis when using median, max and min:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))


          Output



          [0, 2]
          [1, 0, 0]


          UPDATE



          As mentioned by @user3483203 you can use numpy.where:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))

          main()


          Output



          [0 2]
          [1 0 0]





          share|improve this answer


























          • Don't mix a list comprehension with vectorized operations. numpy.where is a much faster solution.

            – user3483203
            Nov 13 '18 at 0:00
















          1














          You need to specify the axis when using median, max and min:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))


          Output



          [0, 2]
          [1, 0, 0]


          UPDATE



          As mentioned by @user3483203 you can use numpy.where:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))

          main()


          Output



          [0 2]
          [1 0 0]





          share|improve this answer


























          • Don't mix a list comprehension with vectorized operations. numpy.where is a much faster solution.

            – user3483203
            Nov 13 '18 at 0:00














          1












          1








          1







          You need to specify the axis when using median, max and min:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))


          Output



          [0, 2]
          [1, 0, 0]


          UPDATE



          As mentioned by @user3483203 you can use numpy.where:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))

          main()


          Output



          [0 2]
          [1 0 0]





          share|improve this answer















          You need to specify the axis when using median, max and min:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))


          Output



          [0, 2]
          [1, 0, 0]


          UPDATE



          As mentioned by @user3483203 you can use numpy.where:



          import numpy as np


          def findoutlier(lis):
          omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
          omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))

          return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))


          def main():
          mat_x = np.array([[10, 3, 2], [1, 2, 6]])
          print(findoutlier(mat_x))

          three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
          print(findoutlier(three_mat_x))

          main()


          Output



          [0 2]
          [1 0 0]






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 13 '18 at 0:36

























          answered Nov 12 '18 at 23:18









          Daniel MesejoDaniel Mesejo

          16.2k21130




          16.2k21130













          • Don't mix a list comprehension with vectorized operations. numpy.where is a much faster solution.

            – user3483203
            Nov 13 '18 at 0:00



















          • Don't mix a list comprehension with vectorized operations. numpy.where is a much faster solution.

            – user3483203
            Nov 13 '18 at 0:00

















          Don't mix a list comprehension with vectorized operations. numpy.where is a much faster solution.

          – user3483203
          Nov 13 '18 at 0:00





          Don't mix a list comprehension with vectorized operations. numpy.where is a much faster solution.

          – user3483203
          Nov 13 '18 at 0:00


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53271381%2ffind-index-of-largest-difference-from-median-with-numpy%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Full-time equivalent

          さくらももこ

          13 indicted, 8 arrested in Calif. drug cartel investigation