find index of largest difference from median with numpy
I'm trying to find the index number of the outlier number. based on difference from median
I'm able to get the correct high number, but whenever the low number is the outlier I only get the high number..
import numpy as np
def findoutlier(lis):
outliermax = np.absolute(np.max(lis) - np.median(lis))
outliermin = np.absolute(np.min(lis) - np.median(lis))
if outliermax > outliermin:
argmax = np.argmax(lis, axis = 1)
return argmax
else:
argmin = np.argmin(lis, axis = 1)
return argmin
def main():
Matx = np.array([[10,3,2],[1,2,6]])
print(findoutlier(Matx))
threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
print(findoutlier(threeMatx))
main()
python numpy functional-programming median argmax
add a comment |
I'm trying to find the index number of the outlier number. based on difference from median
I'm able to get the correct high number, but whenever the low number is the outlier I only get the high number..
import numpy as np
def findoutlier(lis):
outliermax = np.absolute(np.max(lis) - np.median(lis))
outliermin = np.absolute(np.min(lis) - np.median(lis))
if outliermax > outliermin:
argmax = np.argmax(lis, axis = 1)
return argmax
else:
argmin = np.argmin(lis, axis = 1)
return argmin
def main():
Matx = np.array([[10,3,2],[1,2,6]])
print(findoutlier(Matx))
threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
print(findoutlier(threeMatx))
main()
python numpy functional-programming median argmax
add a comment |
I'm trying to find the index number of the outlier number. based on difference from median
I'm able to get the correct high number, but whenever the low number is the outlier I only get the high number..
import numpy as np
def findoutlier(lis):
outliermax = np.absolute(np.max(lis) - np.median(lis))
outliermin = np.absolute(np.min(lis) - np.median(lis))
if outliermax > outliermin:
argmax = np.argmax(lis, axis = 1)
return argmax
else:
argmin = np.argmin(lis, axis = 1)
return argmin
def main():
Matx = np.array([[10,3,2],[1,2,6]])
print(findoutlier(Matx))
threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
print(findoutlier(threeMatx))
main()
python numpy functional-programming median argmax
I'm trying to find the index number of the outlier number. based on difference from median
I'm able to get the correct high number, but whenever the low number is the outlier I only get the high number..
import numpy as np
def findoutlier(lis):
outliermax = np.absolute(np.max(lis) - np.median(lis))
outliermin = np.absolute(np.min(lis) - np.median(lis))
if outliermax > outliermin:
argmax = np.argmax(lis, axis = 1)
return argmax
else:
argmin = np.argmin(lis, axis = 1)
return argmin
def main():
Matx = np.array([[10,3,2],[1,2,6]])
print(findoutlier(Matx))
threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
print(findoutlier(threeMatx))
main()
python numpy functional-programming median argmax
python numpy functional-programming median argmax
asked Nov 12 '18 at 23:04
CluelessClueless
275
275
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
You need to specify the axis when using median, max and min:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
Output
[0, 2]
[1, 0, 0]
UPDATE
As mentioned by @user3483203 you can use numpy.where:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
main()
Output
[0 2]
[1 0 0]
Don't mix a list comprehension with vectorized operations.numpy.where
is a much faster solution.
– user3483203
Nov 13 '18 at 0:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53271381%2ffind-index-of-largest-difference-from-median-with-numpy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You need to specify the axis when using median, max and min:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
Output
[0, 2]
[1, 0, 0]
UPDATE
As mentioned by @user3483203 you can use numpy.where:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
main()
Output
[0 2]
[1 0 0]
Don't mix a list comprehension with vectorized operations.numpy.where
is a much faster solution.
– user3483203
Nov 13 '18 at 0:00
add a comment |
You need to specify the axis when using median, max and min:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
Output
[0, 2]
[1, 0, 0]
UPDATE
As mentioned by @user3483203 you can use numpy.where:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
main()
Output
[0 2]
[1 0 0]
Don't mix a list comprehension with vectorized operations.numpy.where
is a much faster solution.
– user3483203
Nov 13 '18 at 0:00
add a comment |
You need to specify the axis when using median, max and min:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
Output
[0, 2]
[1, 0, 0]
UPDATE
As mentioned by @user3483203 you can use numpy.where:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
main()
Output
[0 2]
[1 0 0]
You need to specify the axis when using median, max and min:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
Output
[0, 2]
[1, 0, 0]
UPDATE
As mentioned by @user3483203 you can use numpy.where:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
main()
Output
[0 2]
[1 0 0]
edited Nov 13 '18 at 0:36
answered Nov 12 '18 at 23:18
Daniel MesejoDaniel Mesejo
16.2k21130
16.2k21130
Don't mix a list comprehension with vectorized operations.numpy.where
is a much faster solution.
– user3483203
Nov 13 '18 at 0:00
add a comment |
Don't mix a list comprehension with vectorized operations.numpy.where
is a much faster solution.
– user3483203
Nov 13 '18 at 0:00
Don't mix a list comprehension with vectorized operations.
numpy.where
is a much faster solution.– user3483203
Nov 13 '18 at 0:00
Don't mix a list comprehension with vectorized operations.
numpy.where
is a much faster solution.– user3483203
Nov 13 '18 at 0:00
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53271381%2ffind-index-of-largest-difference-from-median-with-numpy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown