• transferase activity, transferring glycosyl groups • transferase activity • hyaluronan synthase activity • protein binding • identical protein binding
Cellular component
• cytoplasm • integral component of membrane • plasma membrane • integral component of plasma membrane • membrane
Biological process
• cell adhesion • negative regulation of fibroblast migration • hyaluronan biosynthetic process • cellular response to platelet-derived growth factor stimulus • extracellular matrix assembly • glycosaminoglycan biosynthetic process • extracellular polysaccharide biosynthetic process • estrous cycle
Sources:Amigo / QuickGO
Orthologs
Species
Human
Mouse
Entrez
3036
15116
Ensembl
ENSG00000105509
ENSMUSG00000003665
UniProt
Q92839
Q61647
RefSeq (mRNA)
NM_001297436 NM_001523
NM_008215
RefSeq (protein)
NP_001284365 NP_001514
NP_032241
Location (UCSC)
Chr 19: 51.71 – 51.72 Mb
Chr 17: 17.84 – 17.86 Mb
PubMed search
[3]
[4]
Wikidata
View/Edit Human
View/Edit Mouse
Hyaluronan synthase 1 is an enzyme that in humans is encoded by the HAS1 gene.[5][6]
Contents
1Structure
2Function
3References
4Further reading
Structure[edit]
Hyaluronan or hyaluronic acid (HA) is a high molecular weight unbranched polysaccharide synthesized by a wide variety of organisms from bacteria to mammals, and is a constituent of the extracellular matrix. It consists of alternating glucuronic acid and N-acetylglucosamine residues that are linked by beta-1-3 and beta-1-4 glycosidic bonds. HA is synthesized by membrane-bound synthase at the inner surface of the plasma membrane, and the chains are extruded via ABC-transporter into the extracellular space.[7]
Function[edit]
It serves a variety of functions, including space filling, lubrication of joints, and provision of a matrix through which cells can migrate. HA is actively produced during wound healing and tissue repair to provide a framework for ingrowth of blood vessels and fibroblasts. Changes in the serum concentration of HA are associated with inflammatory and degenerative arthropathies such as rheumatoid arthritis. In addition, the interaction of HA with the leukocyte receptor CD44 is important in tissue-specific homing by leukocytes, and overexpression of HA receptors has been correlated with tumor metastasis. HAS1 is a member of the newly identified vertebrate gene family encoding putative hyaluronan synthases, and its amino acid sequence shows significant homology to the hasA gene product of Streptococcus pyogenes, a glycosaminoglycan synthetase (DG42) from Xenopus laevis, and a recently described murine hyaluronan synthase.[6]
References[edit]
^ abcGRCh38: Ensembl release 89: ENSG00000105509 - Ensembl, May 2017
^ abcGRCm38: Ensembl release 89: ENSMUSG00000003665 - Ensembl, May 2017
^Spicer AP, Seldin MF, Olsen AS, Brown N, Wells DE, Doggett NA, Itano N, Kimata K, Inazawa J, McDonald JA (Jul 1997). "Chromosomal localization of the human and mouse hyaluronan synthase genes". Genomics. 41 (3): 493–7. doi:10.1006/geno.1997.4696. PMID 9169154.
^ ab"Entrez Gene: HAS1 hyaluronan synthase 1".
^Schulz T, Schumacher U, Prehm P (July 2007). "Hyaluronan export by the ABC transporter MRP5 and its modulation by intracellular cGMP". J. Biol. Chem. 282 (29): 20999–1004. doi:10.1074/jbc.M700915200. PMID 17540771.
Mian N (1987). "Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma-membrane fractions of cultured human skin fibroblasts". Biochem. J. 237 (2): 333–42. PMC 1146992. PMID 3099751.
Itano N, Kimata K (1996). "Molecular cloning of human hyaluronan synthase". Biochem. Biophys. Res. Commun. 222 (3): 816–20. doi:10.1006/bbrc.1996.0827. PMID 8651928.
Shyjan AM, Heldin P, Butcher EC, et al. (1996). "Functional cloning of the cDNA for a human hyaluronan synthase". J. Biol. Chem. 271 (38): 23395–9. doi:10.1074/jbc.271.38.23395. PMID 8798544.
Simpson MA, Wilson CM, Furcht LT, et al. (2002). "Manipulation of hyaluronan synthase expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells". J. Biol. Chem. 277 (12): 10050–7. doi:10.1074/jbc.M110069200. PMID 11790779.
Calabro A, Oken MM, Hascall VC, Masellis AM (2002). "Characterization of hyaluronan synthase expression and hyaluronan synthesis in bone marrow mesenchymal progenitor cells: predominant expression of HAS1 mRNA and up-regulated hyaluronan synthesis in bone marrow cells derived from multiple myeloma patients". Blood. 100 (7): 2578–85. doi:10.1182/blood-2002-01-0030. PMID 12239172.
Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
Adamia S, Crainie M, Kriangkum J, et al. (2003). "Abnormal expression of hyaluronan synthases in patients with Waldenstrom's macroglobulimenia". Semin. Oncol. 30 (2): 165–8. doi:10.1053/sonc.2003.50042. PMID 12720129.
Suzuki K, Yamamoto T, Usui T, et al. (2004). "Expression of hyaluronan synthase in intraocular proliferative diseases: regulation of expression in human vascular endothelial cells by transforming growth factor-beta". Jpn. J. Ophthalmol. 47 (6): 557–64. doi:10.1016/j.jjo.2003.09.001. PMID 14636845.
Adamia S, Reiman T, Crainie M, et al. (2005). "Intronic splicing of hyaluronan synthase 1 (HAS1): a biologically relevant indicator of poor outcome in multiple myeloma". Blood. 105 (12): 4836–44. doi:10.1182/blood-2004-10-3825. PMC 1894997. PMID 15731173.
Yabushita H, Kishida T, Fusano K, et al. (2005). "Role of hyaluronan and hyaluronan synthase in endometrial cancer". Oncol. Rep. 13 (6): 1101–5. doi:10.3892/or.13.6.1101. PMID 15870928.
Stuhlmeier KM, Pollaschek C (2006). "Adenovirus-mediated gene transfer of mutated IkappaB kinase and IkappaBalpha reveal NF-kappaB-dependent as well as NF-kappaB-independent pathways of HAS1 activation". J. Biol. Chem. 280 (52): 42766–73. doi:10.1074/jbc.M503374200. PMID 16258173.
Grskovic B, Pollaschek C, Mueller MM, Stuhlmeier KM (2006). "Expression of hyaluronan synthase genes in umbilical cord blood stem/progenitor cells". Biochim. Biophys. Acta. 1760 (6): 890–5. doi:10.1016/j.bbagen.2006.02.002. PMID 16564133.
Kao JJ (2007). "The NF-kappaB inhibitor pyrrolidine dithiocarbamate blocks IL-1beta induced hyaluronan synthase 1 (HAS1) mRNA transcription, pointing at NF-kappaB dependence of the gene HAS1". Exp. Gerontol. 41 (6): 641–7. doi:10.1016/j.exger.2006.04.003. PMID 16723203.
Campo GM, Avenoso A, Campo S, et al. (2007). "TNF-alpha, IFN-gamma, and IL-1beta modulate hyaluronan synthase expression in human skin fibroblasts: synergistic effect by concomital treatment with FeSO4 plus ascorbate". Mol. Cell. Biochem. 292 (1–2): 169–78. doi:10.1007/s11010-006-9230-7. PMID 16786194.
Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
Meran S, Thomas D, Stephens P, et al. (2007). "Involvement of hyaluronan in regulation of fibroblast phenotype". J. Biol. Chem. 282 (35): 25687–97. doi:10.1074/jbc.M700773200. PMID 17611197.
Kyossev Z, Weigel PH (2007). "An enzyme capture assay for analysis of active hyaluronan synthases". Anal. Biochem. 371 (1): 62–70. doi:10.1016/j.ab.2007.08.025. PMID 17904513.
Full-time equivalent From Wikipedia, the free encyclopedia Jump to navigation Jump to search Full-time equivalent ( FTE ) or whole time equivalent ( WTE ) is a unit that indicates the workload of an employed person (or student) in a way that makes workloads or class loads comparable [1] across various contexts. FTE is often used to measure a worker's or student's involvement in a project, or to track cost reductions in an organization. An FTE of 1.0 is equivalent to a full-time worker or student, while an FTE of 0.5 signals half of a full work or school load. [2] Contents 1 U.S. Federal Government 2 In education 2.1 Example 3 Notes 4 References U.S. Federal Government [ edit ] In the U.S. Federal Government, FTE is defined by the Government Accountability Office (GAO) as the number of total hours worked divided by the maximum number of compensable hours in a full-time schedule as...
Fox News U.S. World Opinion Politics Entertainment Business Lifestyle TV Radio More Expand / Collapse search Login Watch TV ☰ Hot Topics U.S. Crime Military Education Terror Immigration Economy Personal Freedoms World U.N. Conflicts Terrorism Disasters Global Economy Environment Religion Scandals Opinion Politics Executive Senate House Judiciary Foreign policy Polls Elections Entertainment Celebrity News Movies TV News Music News Style News Entertainment Video Business Markets Politics Technology Features Business Leaders Lifestyle Food + Drink Cars + Trucks Travel + Outdoors House + Home Fitness + Well-being Style + Beauty Family Science Archaeology Air & Space Planet Earth Wild Nature Natural Science Dinosaurs Tech Security Innovation Drones Computers Video Games Military Tech Health Healthy Living Medical Research Mental Health Cancer Heart Health Children'...