Skip to main content

Emanuel Lodewijk Elte








Emanuel Lodewijk Elte


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


Emanuel Lodewijk Elte (16 March 1881 in Amsterdam – 9 April 1943 in Sobibór)[1] was a Dutch mathematician. He is noted for discovering and classifying semiregular polytopes in dimensions four and higher.


Elte's father Hartog Elte was headmaster of a school in Amsterdam. Emanuel Elte married Rebecca Stork in 1912 in Amsterdam, when he was a teacher at a high school in that city. By 1943 the family lived in Haarlem. When on January 30 of that year a German officer was shot in that town, in reprisal a hundred inhabitants of Haarlem were transported to the Camp Vught, including Elte and his family. As Jews, he and his wife were further deported to Sobibór, where they both died, while his two children died at Auschwitz.[1]



Elte's semiregular polytopes of the first kind[edit]


His work rediscovered the finite semiregular polytopes of Thorold Gosset, and further allowing not only regular facets, but recursively also allowing one or two semiregular ones. These were enumerated in his 1912 book, The Semiregular Polytopes of the Hyperspaces.[2] He called them semiregular polytopes of the first kind, limiting his search to one or two types of regular or semiregular k-faces. These polytopes and more were rediscovered again by Coxeter, and renamed as a part of a larger class of uniform polytopes.[3] In the process he discovered all the main representatives of the exceptional En family of polytopes, save only 142 which did not satisfy his definition of semiregularity.













































































































































































































































































































































































































































































































































Summary of the semiregular polytopes of the first kind[4]
n
Elte
notation
Vertices
Edges
Faces
Cells
Facets

Schläfli
symbol

Coxeter
symbol

Coxeter
diagram

Polyhedra (Archimedean solids)
3
tT 12 18 4p3+4p6

t{3,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
tC 24 36 6p8+8p3

t{4,3}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
tO 24 36 6p4+8p6

t{3,4}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
tD 60 90 20p3+12p10

t{5,3}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
tI 60 90 20p6+12p5

t{3,5}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
TT = O 6 12 (4+4)p3


r{3,3} = {31,1}
011

CDel node 1.pngCDel split1.pngCDel nodes.png
CO 12 24 6p4+8p3

r{3,4}
CDel node 1.pngCDel split1-43.pngCDel nodes.png
ID 30 60 20p3+12p5

r{3,5}
CDel node 1.pngCDel split1-53.pngCDel nodes.png
Pq
2q 4q 2pq+qp4

t{2,q}
CDel node 1.pngCDel 2x.pngCDel node 1.pngCDel q.pngCDel node.png
APq
2q 4q 2pq+2qp3

s{2,2q}
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node.png
semiregular 4-polytopes
4
tC5
10 30 (10+20)p3
5O+5T
r{3,3,3} = {32,1} 021

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png
tC8
32 96 64p3+24p4
8CO+16T
r{4,3,3}
CDel node 1.pngCDel split1-43.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png
tC16=C24(*) 48 96 96p3
(16+8)O
r{3,3,4}
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 4a.pngCDel nodea.png

tC24
96 288 96p3 + 144p4
24CO + 24C

r{3,4,3}
CDel node 1.pngCDel split1-43.pngCDel nodes.pngCDel 3a.pngCDel nodea.png

tC600
720 3600 (1200 + 2400)p3
600O + 120I

r{3,3,5}
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 5a.pngCDel nodea.png

tC120
1200 3600 2400p3 + 720p5
120ID+600T
r{5,3,3}
CDel node 1.pngCDel split1-53.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png

HM4 = C16(*)
8 24 32p3
(8+8)T
{3,31,1} 111

CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
30 60 20p3 + 20p6
(5 + 5)tT

2t{3,3,3}
CDel branch 11.pngCDel 3ab.pngCDel nodes.png
288 576 192p3 + 144p8
(24 + 24)tC

2t{3,4,3}
CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel nodes.png
20 60 40p3 + 30p4
10T + 20P3


t0,3{3,3,3}

CDel branch.pngCDel 3ab.pngCDel nodes 11.png
144 576 384p3 + 288p4
48O + 192P3


t0,3{3,4,3}

CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes 11.png

q2
2q2

q2p4 + 2qpq
(q + q)Pq

2t{q,2,q}
CDel labelq.pngCDel branch 10.pngCDel 2.pngCDel branch 10.pngCDel labelq.png
semiregular 5-polytopes
5
S51
15 60 (20+60)p3
30T+15O 6C5+6tC5
r{3,3,3,3} = {33,1} 031

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
S52
20 90 120p3
30T+30O (6+6)C5
2r{3,3,3,3} = {32,2} 022

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
HM5
16 80 160p3
(80+40)T 16C5+10C16
{3,32,1} 121

CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.png
Cr51
40 240 (80+320)p3
160T+80O 32tC5+10C16
r{3,3,3,4}
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
Cr52
80 480 (320+320)p3
80T+200O 32tC5+10C24
2r{3,3,3,4}
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 4a3b.pngCDel nodes.png
semiregular 6-polytopes
6
S61 (*)
r{35} = {34,1} 041

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
S62 (*)
2r{35} = {33,2} 032

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png
HM6
32 240 640p3
(160+480)T 32S5+12HM5
{3,33,1} 131

CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
V27
27 216 720p3
1080T 72S5+27HM5
{3,3,32,1} 221

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.png
V72
72 720 2160p3
2160T (27+27)HM6
{3,32,2} 122

CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
semiregular 7-polytopes
7
S71 (*)
r{36} = {35,1} 051

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
S72 (*)
2r{36} = {34,2} 042

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
S73 (*)
3r{36} = {33,3} 033

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
HM7(*) 64 672 2240p3
(560+2240)T 64S6+14HM6
{3,34,1} 141

CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
V56
56 756 4032p3
10080T 576S6+126Cr6
{3,3,3,32,1} 321

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.png
V126
126 2016 10080p3
20160T 576S6+56V27
{3,3,33,1} 231

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
V576
576 10080 40320p3
(30240+20160)T 126HM6+56V72
{3,33,2} 132

CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png
semiregular 8-polytopes
8
S81 (*)
r{37} = {36,1} 061

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
S82 (*)
2r{37} = {35,2} 052

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
S83 (*)
3r{37} = {34,3} 043

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png
HM8(*) 128 1792 7168p3
(1792+8960)T 128S7+16HM7
{3,35,1} 151

CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
V2160
2160 69120 483840p3
1209600T 17280S7+240V126
{3,3,34,1} 241

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
V240
240 6720 60480p3
241920T 17280S7+2160Cr7
{3,3,3,3,32,1} 421

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.png

(*) Added in this table as a sequence Elte recognized but did not enumerate explicitly

Regular dimensional families:




  • Sn = n-simplex: S3, S4, S5, S6, S7, S8, ...


  • Mn = n-cube= measure polytope: M3, M4, M5, M6, M7, M8, ...


  • HMn = n-demicube= half-measure polytope: HM3, HM4, M5, M6, HM7, HM8, ...


  • Crn = n-orthoplex= cross polytope: Cr3, Cr4, Cr5, Cr6, Cr7, Cr8, ...


Semiregular polytopes of first order:



  • Vn = semiregular polytope with n vertices

Polygons



  • Pn = regular n-gon

Polyhedra:



  • Regular: T, C, O, I, D

  • Truncated: tT, tC, tO, tI, tD


  • Quasiregular (rectified): CO, ID

  • Cantellated: RCO, RID

  • Truncated quasiregular (omnitruncated): tCO, tID

  • Prismatic: Pn, APn


4-polytopes:




  • Cn = Regular 4-polytopes with n cells: C5, C8, C16, C24, C120, C600

  • Rectified: tC5, tC8, tC16, tC24, tC120, tC600



See also[edit]


  • Gosset–Elte figures


Notes[edit]





  1. ^ ab Emanuël Lodewijk Elte at joodsmonument.nl


  2. ^ Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen, ISBN 1-4181-7968-X.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    [1] [2]



  3. ^ Coxeter, H.S.M. Regular polytopes, 3rd Edn, Dover (1973) p. 210 (11.x Historical remarks)


  4. ^ Page 128













Retrieved from "https://en.wikipedia.org/w/index.php?title=Emanuel_Lodewijk_Elte&oldid=854395963"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.444","walltime":"0.537","ppvisitednodes":{"value":1371,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":66514,"limit":2097152},"templateargumentsize":{"value":3180,"limit":2097152},"expansiondepth":{"value":11,"limit":40},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":4242,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 219.893 1 -total"," 33.25% 73.108 1 Template:Reflist"," 26.69% 58.691 1 Template:Citation"," 26.50% 58.280 1 Template:Sobibor_extermination_camp"," 24.23% 53.285 1 Template:Nazi_death_camp"," 24.08% 52.961 3 Template:Navbox"," 21.77% 47.872 45 Template:CDD"," 16.83% 37.018 1 Template:Authority_control"," 6.42% 14.114 6 Template:Hlist"," 2.32% 5.100 1 Template:Hlist_Nazi_death_camps"]},"scribunto":{"limitreport-timeusage":{"value":"0.106","limit":"10.000"},"limitreport-memusage":{"value":2483322,"limit":52428800}},"cachereport":{"origin":"mw1250","timestamp":"20181026205439","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":92,"wgHostname":"mw1267"});});

Popular posts from this blog

Full-time equivalent

さくらももこ

13 indicted, 8 arrested in Calif. drug cartel investigation