Skip to main content

Queue (abstract data type)








Queue (abstract data type)


From Wikipedia, the free encyclopedia
  (Redirected from Queue (data structure))

Jump to navigation
Jump to search










Queue

Time complexity in big O notation
































Algorithm

Average

Worst case
Space

O(n)

O(n)
Search

O(n)

O(n)
Insert

O(1)

O(1)
Delete

O(1)

O(1)




Representation of a FIFO (first in, first out) queue


In computer science, a queue is a particular kind of abstract data type (ADT) or collection in which the entities in the collection are kept in order and the principal (or only) operations on the collection are the addition of entities to the rear terminal position, known as enqueue, and removal of entities from the front terminal position, known as dequeue. This makes the queue a First-In-First-Out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will be the first one to be removed. This is equivalent to the requirement that once a new element is added, all elements that were added before have to be removed before the new element can be removed. Often a peek or front operation is also entered, returning the value of the front element without dequeuing it. A queue is an example of a linear data structure, or more abstractly a sequential collection.


Queues provide services in computer science, transport, and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later. In these contexts, the queue performs the function of a buffer.


Queues are common in computer programs, where they are implemented as data structures coupled with access routines, as an abstract data structure or in object-oriented languages as classes. Common implementations are circular buffers and linked lists.




Contents






  • 1 Queue implementation


    • 1.1 Queues and programming languages


    • 1.2 Examples




  • 2 Purely functional implementation


    • 2.1 Real-time queue


    • 2.2 Amortized queue




  • 3 See also


  • 4 References


  • 5 Further reading


  • 6 External links





Queue implementation[edit]


Theoretically, one characteristic of a queue is that it does not have a specific capacity. Regardless of how many elements are already contained, a new element can always be added. It can also be empty, at which point removing an element will be impossible until a new element has been added again.


Fixed length arrays are limited in capacity, but it is not true that items need to be copied towards the head of the queue. The simple trick of turning the array into a closed circle and letting the head and tail drift around endlessly in that circle makes it unnecessary to ever move items stored in the array. If n is the size of the array, then computing indices modulo n will turn the array into a circle. This is still the conceptually simplest way to construct a queue in a high level language, but it does admittedly slow things down a little, because the array indices must be compared to zero and the array size, which is comparable to the time taken to check whether an array index is out of bounds, which some languages do, but this will certainly be the method of choice for a quick and dirty implementation, or for any high level language that does not have pointer syntax. The array size must be declared ahead of time, but some implementations simply double the declared array size when overflow occurs. Most modern languages with objects or pointers can implement or come with libraries for dynamic lists. Such data structures may have not specified fixed capacity limit besides memory constraints. Queue overflow results from trying to add an element onto a full queue and queue underflow happens when trying to remove an element from an empty queue.


A bounded queue is a queue limited to a fixed number of items.[1]


There are several efficient implementations of FIFO queues. An efficient implementation is one that can perform the operations—enqueuing and dequeuing—in O(1) time.




  • Linked list

    • A doubly linked list has O(1) insertion and deletion at both ends, so is a natural choice for queues.

    • A regular singly linked list only has efficient insertion and deletion at one end. However, a small modification—keeping a pointer to the last node in addition to the first one—will enable it to implement an efficient queue.



  • A deque implemented using a modified dynamic array



Queues and programming languages[edit]


Queues may be implemented as a separate data type, or may be considered a special case of a double-ended queue (deque) and not implemented separately. For example, Perl and Ruby allow pushing and popping an array from both ends, so one can use push and unshift functions to enqueue and dequeue a list (or, in reverse, one can use shift and pop), although in some cases these operations are not efficient.


C++'s Standard Template Library provides a "queue" templated class which is restricted to only push/pop operations. Since J2SE5.0, Java's library contains a Queue interface that specifies queue operations; implementing classes include LinkedList and (since J2SE 1.6) ArrayDeque. PHP has an SplQueue class and third party libraries like beanstalk'd and Gearman.



Examples[edit]


A simple queue implemented in Ruby:


class Queue
def initialize
@list = Array.new
end

def enqueue(element)
@list << element
end

def dequeue
@list.shift
end
end


Purely functional implementation[edit]


Queues can also be implemented as a purely functional data structure.[2] Two versions of the implementation exist. The first one, called real-time queue,[3] presented below, allows the queue to be persistent with operations in O(1) worst-case time, but requires lazy lists with memoization. The second one, with no lazy lists nor memoization is presented at the end of the sections. Its amortized time is O(1){displaystyle O(1)}O(1) if the persistency is not used; but its worst-time complexity is O(n){displaystyle O(n)}O(n) where n is the number of elements in the queue.


Let us recall that, for l{displaystyle l}l a list, |l|{displaystyle |l|}{displaystyle |l|} denotes its length, that NIL represents an empty list and CONS⁡(h,t){displaystyle operatorname {CONS} (h,t)}{displaystyle operatorname {CONS} (h,t)} represents the list whose head is h and whose tail is t.



Real-time queue[edit]


The data structure used to implement our queues consists of three linked lists (f,r,s){displaystyle (f,r,s)}{displaystyle (f,r,s)} where f is the front of the queue, r is the rear of the queue in reverse order. The invariant of the structure is that s is the rear of f without its |r|{displaystyle |r|}|r| first elements, that is |s|=|f|−|r|{displaystyle |s|=|f|-|r|}{displaystyle |s|=|f|-|r|}. The tail of the queue (CONS⁡(x,f),r,s){displaystyle (operatorname {CONS} (x,f),r,s)}{displaystyle (operatorname {CONS} (x,f),r,s)} is then almost (f,r,s){displaystyle (f,r,s)}{displaystyle (f,r,s)} and
inserting an element x to (f,r,s){displaystyle (f,r,s)}{displaystyle (f,r,s)} is almost (f,CONS⁡(x,r),s){displaystyle (f,operatorname {CONS} (x,r),s)}{displaystyle (f,operatorname {CONS} (x,r),s)}. It is said almost, because in both of those results, |s|=|f|−|r|+1{displaystyle |s|=|f|-|r|+1}{displaystyle |s|=|f|-|r|+1}. An auxiliary function aux{displaystyle aux}{displaystyle aux} must then be called for the invariant to be satisfied. Two cases must be considered, depending on whether s{displaystyle s}s is the empty list, in which case |r|=|f|+1{displaystyle |r|=|f|+1}{displaystyle |r|=|f|+1}, or not. The formal definition is aux⁡(f,r,Cons⁡(_,s))=(f,r,s){displaystyle operatorname {aux} (f,r,operatorname {Cons} (_,s))=(f,r,s)}{displaystyle operatorname {aux} (f,r,operatorname {Cons} (_,s))=(f,r,s)} and aux⁡(f,r,NIL)=(f′,NIL,f′){displaystyle operatorname {aux} (f,r,{text{NIL}})=(f',{text{NIL}},f')}{displaystyle operatorname {aux} (f,r,{text{NIL}})=(f',{text{NIL}},f')} where f′{displaystyle f'}f' is f followed by r reversed.


Let us call reverse⁡(f,r){displaystyle operatorname {reverse} (f,r)}{displaystyle operatorname {reverse} (f,r)} the function which returns f followed by r reversed. Let us furthermore assume that |r|=|f|+1{displaystyle |r|=|f|+1}{displaystyle |r|=|f|+1}, since it is the case when this function is called. More precisely, we define a lazy function rotate⁡(f,r,a){displaystyle operatorname {rotate} (f,r,a)}{displaystyle operatorname {rotate} (f,r,a)} which takes as input three list such that |r|=|f|+1{displaystyle |r|=|f|+1}{displaystyle |r|=|f|+1}, and return the concatenation of f, of r reversed and of a. Then reverse⁡(f,r)=rotate⁡(f,r,NIL){displaystyle operatorname {reverse} (f,r)=operatorname {rotate} (f,r,{text{NIL}})}{displaystyle operatorname {reverse} (f,r)=operatorname {rotate} (f,r,{text{NIL}})}.
The inductive definition of rotate is rotate⁡(NIL,Cons⁡(y,NIL),a)=Cons⁡(y,a){displaystyle operatorname {rotate} ({text{NIL}},operatorname {Cons} (y,{text{NIL}}),a)=operatorname {Cons} (y,a)}{displaystyle operatorname {rotate} ({text{NIL}},operatorname {Cons} (y,{text{NIL}}),a)=operatorname {Cons} (y,a)} and rotate⁡(CONS⁡(x,f),CONS⁡(y,r),a)=Cons⁡(x,rotate⁡(f,r,CONS⁡(y,a))){displaystyle operatorname {rotate} (operatorname {CONS} (x,f),operatorname {CONS} (y,r),a)=operatorname {Cons} (x,operatorname {rotate} (f,r,operatorname {CONS} (y,a)))}{displaystyle operatorname {rotate} (operatorname {CONS} (x,f),operatorname {CONS} (y,r),a)=operatorname {Cons} (x,operatorname {rotate} (f,r,operatorname {CONS} (y,a)))}. Its running time is O(r){displaystyle O(r)}{displaystyle O(r)}, but, since lazy evaluation is used, the computation is delayed until the results is forced by the computation.


The list s in the data structure has two purposes. This list serves as a counter for |f|−|r|{displaystyle |f|-|r|}{displaystyle |f|-|r|}, indeed, |f|=|r|{displaystyle |f|=|r|}{displaystyle |f|=|r|} if and only if s is the empty list. This counter allows us to ensure that the rear is never longer than the front list. Furthermore, using s, which is a tail of f, forces the computation of a part of the (lazy) list f during each tail and insert operation. Therefore, when |f|=|r|{displaystyle |f|=|r|}{displaystyle |f|=|r|}, the list f is totally forced. If it was not the case, the internal representation of f could be some append of append of... of append, and forcing would not be a constant time operation anymore.



Amortized queue[edit]


Note that, without the lazy part of the implementation, the real-time queue would be a non-persistent implementation of queue in O(1){displaystyle O(1)}O(1) amortized time. In this case, the list s can be replaced by the integer |f|−|r|{displaystyle |f|-|r|}{displaystyle |f|-|r|}, and the reverse function would be called when s{displaystyle s}s is 0.



See also[edit]




  • Circular buffer


  • Double-ended queue (deque)

  • Priority queue

  • Queueing theory


  • Stack (abstract data type) – the "opposite" of a queue: LIFO (Last In First Out)



References[edit]





  1. ^ "Queue (Java Platform SE 7)". Docs.oracle.com. 2014-03-26. Retrieved 2014-05-22..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Okasaki, Chris. "Purely Functional Data Structures" (PDF).


  3. ^ Hood, Robert; Melville, Robert (November 1981). "Real-time queue operations in pure Lisp". Information Processing Letters,. 13 (2). hdl:1813/6273.




Further reading[edit]




  • Donald Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third Edition. Addison-Wesley, 1997.
    ISBN 0-201-89683-4. Section 2.2.1: Stacks, Queues, and Deques, pp. 238–243.


  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.
    ISBN 0-262-03293-7. Section 10.1: Stacks and queues, pp. 200–204.

  • William Ford, William Topp. Data Structures with C++ and STL, Second Edition. Prentice Hall, 2002.
    ISBN 0-13-085850-1. Chapter 8: Queues and Priority Queues, pp. 386–390.


  • Adam Drozdek. Data Structures and Algorithms in C++, Third Edition. Thomson Course Technology, 2005.
    ISBN 0-534-49182-0. Chapter 4: Stacks and Queues, pp. 137–169.



External links[edit]







  • STL Quick Reference

  • VBScript implementation of stack, queue, deque, and Red-Black Tree



 This article incorporates public domain material from the NIST document: Black, Paul E. "Bounded queue". Dictionary of Algorithms and Data Structures.









Retrieved from "https://en.wikipedia.org/w/index.php?title=Queue_(abstract_data_type)&oldid=864522413"





Navigation menu


























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.344","walltime":"0.571","ppvisitednodes":{"value":1900,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":40607,"limit":2097152},"templateargumentsize":{"value":3196,"limit":2097152},"expansiondepth":{"value":12,"limit":40},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":17367,"limit":5000000},"entityaccesscount":{"value":2,"limit":400},"timingprofile":["100.00% 326.941 1 -total"," 38.84% 126.977 1 Template:Reflist"," 27.89% 91.173 3 Template:Cite_web"," 21.29% 69.621 1 Template:More_footnotes"," 14.74% 48.177 1 Template:Ambox"," 11.29% 36.915 1 Template:Infobox_data_structure"," 10.42% 34.082 1 Template:Infobox"," 10.34% 33.815 4 Template:ISBN"," 9.20% 30.079 1 Template:Cite_journal"," 5.80% 18.967 1 Template:Infobox3cols"]},"scribunto":{"limitreport-timeusage":{"value":"0.151","limit":"10.000"},"limitreport-memusage":{"value":3890541,"limit":52428800}},"cachereport":{"origin":"mw1275","timestamp":"20181028101927","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":101,"wgHostname":"mw1321"});});

Popular posts from this blog

Full-time equivalent

さくらももこ

13 indicted, 8 arrested in Calif. drug cartel investigation